Best approximation with wavelets in weighted Orlicz spaces

被引:0
作者
Maria De Natividade
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
Monatshefte für Mathematik | 2011年 / 164卷
关键词
Greedy algorithm; Non-linear approximation; Weighted Orlicz spaces; Wavelets; Approximation spaces; Weighted Besov spaces; 41A17; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Democracy functions of wavelet admissible bases are computed for weighted Orlicz Spaces LΦ(w) in terms of the fundamental function of LΦ(w). In particular, we prove that these bases are greedy in LΦ(w) if and only if LΦ(w) = Lp(w), 1 < p < ∞. Also, sharp embeddings for the approximation spaces are given in terms of weighted discrete Lorentz spaces. For Lp(w) the approximation spaces are identified with weighted Besov spaces.
引用
收藏
页码:87 / 114
页数:27
相关论文
共 37 条
[1]  
Aimar H.A.(2003)Multiresolution approximation and wavelet bases of weighted Lebesgue spaces J. Fourier Anal. Appl. 9 497-510
[2]  
Bernardis A.L.(1986)Orthonormal bases of compactly supported wavelets Commun. Pure Appl. Math. 2 1-18
[3]  
Martín-Reys F.J.(2003)Best basis selection for approximation in Found. Comput. Math. 3 161-185
[4]  
Daubechies I.(2003)The thresholding greedy algorithm, greedy bases, and duality Construct. Approx. 19 575-597
[5]  
DeVore R.(1985)Decomposition of Besov Spaces Indiana Univ. Math. J. 34 777-799
[6]  
Petrova G.(1990)A discrete transform and decomposition of distribution spaces J. Funct. Anal. 93 34-170
[7]  
Temlyakov V.(2001)Wavelet characterization of weighted spaces J. Geom. Anal. 11 241-262
[8]  
Dilworth S.J.(2004)Sharp Jackson and Bernstein inequalities for n-term approximation in sequence spaces with applications Indiana Univ. Math. J. 53 1739-1762
[9]  
Kalton N.J.(2008)Wavelets, Orlicz spaces and Greedy bases Appl. Compt. Harmon. Anal. 24 70-93
[10]  
Kutzarova D.(2001)Some Remarks on non-linear approximation with Schauder bases East J. Approx. 7 267-285