The extended large deviation principle for a process with independent increments

被引:0
作者
A. A. Mogul’skiĭ
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2017年 / 58卷
关键词
compound Poisson process; process with independent increments; Cramér condition; deviation rate function; large deviation principle; function with bounded variation; space of functions without discontinuities of the second kind; Borovkov metric;
D O I
暂无
中图分类号
学科分类号
摘要
Considering a process with independent increments under the moment Cramér condition, we establish the extended large deviation principle in the space of functions without discontinuities of the second kind which is endowed with the Borovkov metric.
引用
收藏
页码:515 / 524
页数:9
相关论文
共 22 条
  • [1] Borovkov A. A.(1972)The convergence of distributions of functionals on stochastic processes Russian Math. Surveys 27 1-42
  • [2] Borovkov A. A.(1973)On the rate of convergence for the invariance principle Theor. Probab. Appl. 18 207-225
  • [3] Skorokhod A. V.(1956)Limit theorems for stochastic processes Teor. Veroyatnost. i Primenen. 1 289-319
  • [4] Borovkov A. A.(2012)Large deviation principles for random walk trajectories Theor. Probab. Appl. 56 538-561
  • [5] Mogul’skiĭ A. A.(2016)The large deviation principle for the generalized Poisson process Mat. Tr. 19 119-157
  • [6] Mogul’skiĭ A. A.(1967)Boundary problems for random walks and large deviations in function spaces Theor. Probab. Appl. 12 575-595
  • [7] Borovkov A. A.(2011)Properties of a functional of trajectories which arises in studying the probabilities of large deviations of random walks Sib. Math. J. 52 612-627
  • [8] Borovkov A. A.(2013)The expansion theorem for the deviation integral Siberian Adv. Math. 23 250-262
  • [9] Mogul’skiĭ A. A.(2008)Large deviations Ann. Probab. 36 397-419
  • [10] Mogul’skiĭ A. A.(1993)On the theory of large deviations Theory Probab. Appl. 38 490-497