Design of hexagonal photonic crystal fiber with Ge10As22Se68 chalcogenide core and As2S3 cladding for mid-infrared supercontinuum generation

被引:0
作者
Wenxuan Wang
Zongyuan Wu
Dan Yang
Yuyu Zhao
Tonglei Cheng
机构
[1] Northeastern University,College of Information Science and Engineering
[2] Northeastern University,Key Laboratory of Data Analytics and Optimization for Smart Industry Ministry of Education
[3] Northeastern University,Key Laboratory of Infrared Optoelectric Materials and Micro
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
Photonic crystal fiber; Mid-infrared supercontinuum; Zero dispersion wavelength;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a hexagonal photonic crystal fiber (PCF) suitable for broadened mid-infrared supercontinuum generation. The designed PCF has five air-hole rings with three different air holes, arranged in a triangle pattern. The central air hole is filled with Ge10As22Se68\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ge_{10}As_{22}Se_{68}$$\end{document} and the inner wall of the air hole is coated with As2S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$As_{2}S_{3}$$\end{document}. In the mid-infrared wavelength range of 3400 nm to 4500 nm, the supercontinuum bandwidth increases with the increase of the pump wavelength, peak power, and pulse width. When the pump light source with a peak power of 5 kW and the input pulse width is 200 fs, a 10 mm fiber can produce an extremely wide supercontinuum spectrum spanning 6000 nm. In addition, optical parameters including dispersion, confinement loss, effective mode area, and nonlinear coefficients are numerically investigated by the finite element method. The results show that at a wavelength of 4000 nm, the second order dispersion of the fiber is 8.81×10-27s2m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8.81\times 10^{-27} \textrm{s}^{2}\textrm{m}^{-1}$$\end{document} and the nonlinear coefficient is 972.5W-1km-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$972.5 \textrm{W}^{-1}\textrm{km}^{-1}$$\end{document}. The designed photonic crystal fiber is stable, dispersion flat, and can meet the application requirements of obtaining broad supercontinuum spectrum.
引用
收藏
相关论文
共 174 条
  • [1] Alam MZ(2021)Design of a novel star type photonic crystal fiber for mid-infrared supercontinuum generation Optics Communications 500 1-10
  • [2] Tahmid MI(2022)Inspection of an HSH-PCF for optical communication with high non-linearity, birefringence and negative dispersion Alex. Eng. J. 61 11139-11147
  • [3] Mouna ST(2022)Tellurite glass based optical fiber for the investigation of supercontinuum generation and nonlinear properties Phys. Scr. 97 1-7
  • [4] Islam MA(2017)A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications Sens. Bio-Sens. Res. 12 8-14
  • [5] Alam MS(2020)Improving the sensitivity of the HC-PBF based gas sensor by optimization of core size and mode interference suppression Opt. Quant. Electron. 52 1-10
  • [6] Amin R(2022)Portable ppb-level carbon dioxide sensor based on flexible hollow waveguide cell and mid-infrared spectroscopy Sens. Actuators, B Chem. 359 131553-14
  • [7] Abdulrazak LF(2020)Supercontinuum generation in PCF with As Opt. Quant. Electron. 52 1-11
  • [8] Khan E(2021) S Opt. Quant. Electron. 53 1-169
  • [9] Ahmed K(2017)/Ge Appl. Opt. 56 163-14
  • [10] Bui FM(2019)Sb JOSA B 36 8-1182