Bianchi type-I cosmological model in Sáez-Ballester theory with variable deceleration parameter

被引:0
作者
R. K. Mishra
Heena Dua
机构
[1] Sant Longowal Institute of Engineering and Technology,Department of Mathematics
来源
Astrophysics and Space Science | 2021年 / 366卷
关键词
Variable deceleration parameter; Cosmological constant; Dark energy; Observational data;
D O I
暂无
中图分类号
学科分类号
摘要
The present study is outcome of investigation of Bianchi type-I cosmological model in Sáez-Ballester theory of gravity with variable deceleration parameter. Here, we have also considered variable cosmological constant Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda$\end{document} which may be a probable candidate to discuss dark energy. The solution of the field equations has been found using variable deceleration parameter i.e. q=−1+βH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q=-1+\beta H$\end{document} (with β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document} as a positive constant and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H$\end{document} as Hubble parameter) (Tiwari et al. in Eur. Phys. J. Plus 132:1–9, 2017) and suitable assumption of variable form of cosmological constant. We have expressed cosmological parameters such as Hubble parameter, deceleration parameter, energy density, pressure, cosmological constant and equation of state (EoS) in terms of redshift parameter and presented their dynamical behaviour graphically. In addition to Hubble parameter and deceleration parameter, the redshift variation of other higher order cosmographic parameters such as jerk, snap and lerk parameters has also been observed. The evolution of (s,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(s,r)$\end{document} and (q,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,r)$\end{document} trajectories has been examined to study different phases of the universe. Inspired by the study carried by Magana et al. (Mon. Not. R. Astron. Soc. 476(1), 1036, 2018), which consists of updated compilation of 51 points of homogenized and model-independent observational Hubble data, we have decided to use the same data for proposed study related with the expansion of the universe. Using these 51 values of observed Hubble measurements and performing χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi^{2}$\end{document} test, we have found the best suitable value of model parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document} and H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{0}$\end{document} (present value of Hubble parameter). The authors have noted that the obtained outcomes coincide with the modern cosmological observational data.
引用
收藏
相关论文
共 82 条
[1]  
Abers E.(1973)Guage theories Phys. Rep. 9 1-141
[2]  
Lee B.(2018)Anisotropic new holographic dark energy model in Sáez–Ballester theory of gravitation Astrophys. Space Sci. 363 1-11
[3]  
Aditya Y.(2012)Cosmological models with linearly varying deceleration parameter Int. J. Theor. Phys. 51 612-467
[4]  
Reddy D.R.K.(2014)Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints J. Cosmol. Astropart 2014 457-15
[5]  
Akarsu Ö.(2004)Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters Mon. Not. R. Astron. Soc. 353 227-13
[6]  
Dereli T.(2002)FRW-type universe with vacuum energy density Gravit. Cosmol. 8 1-9
[7]  
Akarsu Ö.(2003)First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results Astrophys. J. Suppl. 148 925-13
[8]  
Kumar S.(1961)Mach’s principle and a relativistic theory of gravitation Phys. Rev. 124 625-320
[9]  
Myrzakulov R.(2003)Quintessence without scalar fields Recent Res. Dev. Astron. Astrophys. 1 137-1038
[10]  
Sami M.(2012)String cosmological models from early deceleration to current acceleration phase with varying G and Eur. Phys. J. Plus 127 1-470