Deriving Intrinsic Parameters of Photoinduced Electron Transfer Reaction from the Transient Effect Probed by Picosecond Time-Resolved Fluorescence Quenching

被引:0
作者
X. Allonas
P. Jacques
A. Accary
M. Kessler
F. Heisel
机构
[1] Ecole Nationale Supérieure de Chimie,Département de Photochimie Générale, UMR CNRS No. 7525
[2] Ecole Nationale Supérieure de Chimie,Département de Photochimie Générale, UMR CNRS No. 7525
[3] Université de haute Alsace,Laboratoire Gestion des Risques Environnement
[4] Groupe d'Optique Appliquée,undefined
[5] Laboratoire PHASE,undefined
[6] UPR No. 292,undefined
来源
Journal of Fluorescence | 2000年 / 10卷
关键词
Transient effect; deconvolution; pyrylium salt; electron transfer;
D O I
暂无
中图分类号
学科分类号
摘要
Fluorescence quenching of a pyrylium salt (PDP2+) by toluene in acetonitrile gives rise to a nonexponential decay. This behavior is ascribed to the so-called transient effect occurring at high quencher concentrations for diffusion-controlled reactions. First, the Kalman filter was used to deconvolute the original signal from the experimental decay curve and the response function of the apparatus. This treatment led to a calculated deconvoluted decay curve which enabled the transient effect analysis to be conducted. This real decay curve was then analyzed using two models. The Smoluchowski—Collins—Kimball (SCK) model, applied to diffusion-controlled reactions, yielded the reaction radius rAD and the intrinsic rate constant kact of the bimolecular electron transfer reaction. The Marcus electron transfer/diffusion (ETD) model, which provides a powerful method to evaluate the electronic coupling Hel associate with the reaction, was also used but is more difficult to handle due to extensive computational needs. Finally, the adequacy of the two models (SCK and ETD) for analysis of the transient effect was addressed, as well as the appropriateness of the Kalman filter for fluorescence signal deconvolution.
引用
收藏
页码:237 / 237
相关论文
共 106 条
[1]  
Marcus R. A.(1956)undefined J. Chem. Phys. 24 966-undefined
[2]  
Marcus R. A.(1985)undefined Biochim. Biophys. Acta 811 265-undefined
[3]  
Sutin N.(1987)undefined J. Am. Chem. Soc. 109 3794-undefined
[4]  
Gould I. R.(1988)undefined Chem. Phys. 127 249-undefined
[5]  
Ege D.(1988)undefined Helv. Chim. Acta 71 93-undefined
[6]  
Mattes S. L.(1990)undefined J. Phys. Chem. 94 2889-undefined
[7]  
Mataga N.(1997)undefined J. Am. Chem. Soc. 119 57-undefined
[8]  
Asahi T.(1970)undefined Isr. J. Chem. 8 259-undefined
[9]  
Kanda Y.(1961)undefined Prog. React. Kinet. 1 188-undefined
[10]  
Okada T.(1961)undefined Prog. React. Kinet. 1 129-undefined