The Harmonicity of Slice Regular Functions

被引:0
作者
Cinzia Bisi
Jörg Winkelmann
机构
[1] Università di Ferrara,Dipartimento di Matematica e Informatica
[2] Ruhr-Universität Bochum,Lehrstuhl Analysis II, Fakultät für Mathematik
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Slice regular functions; Harmonicity; Laplacians; Mean value theorems; Quaternionic analysis; Poisson formula; Jensen formula; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate harmonicity, Laplacians, mean value theorems, and related topics in the context of quaternionic analysis. We observe that a Mean Value Formula for slice regular functions holds true and it is a consequence of the well-known Representation Formula for slice regular functions over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document}. Motivated by this observation, we have constructed three order-two differential operators in the kernel of which slice regular functions are, answering positively to the question: is a slice regular function over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} (analogous to an holomorphic function over C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}) ”harmonic” in some sense, i.e., is it in the kernel of some order-two differential operator over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document}? Finally, some applications are deduced such as a Poisson Formula for slice regular functions over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} and a Jensen’s Formula for semi-regular ones.
引用
收藏
页码:7773 / 7811
页数:38
相关论文
共 47 条
[1]  
Alpay D(2013)Pontryagin-de Branges–Rovnyak spaces of slice hyperholomorphic functions J. Anal. Math. 121 87-125
[2]  
Colombo F(2019)Log-biharmonicity and a Jensen formula in the space of quaternions Ann. Acad. Sci. Fenn. Math. 44 805-839
[3]  
Sabadini I(2019)Slice-quaternionic Hopf surfaces J. Geom. Anal. 29 1837-1858
[4]  
Altavilla A(2009)Möbius transformations and the Poincaré distance in the quaternionic setting Indiana Univ. Math. J. 58 2729-2764
[5]  
Bisi C(2012)The Schwarz–Pick lemma for slice regular functions Indiana Univ. Math. J. 61 297-317
[6]  
Angella D(2017)Landau’s theorem for slice regular functions on the quaternionic unit ball Int. J. Math. 28 21-510
[7]  
Bisi C(2018)On quaternionic tori and their moduli space J. Noncommut. Geom. 12 473-117
[8]  
Bisi C(2020)On a quaternionic Picard theorem Proc. Am. Math. Soc. Ser. B 7 106-1808
[9]  
Gentili G(2020)On Runge pairs and topology of axially symmetric domains J. Noncommut. Geom. 222 1793-403
[10]  
Bisi C(2009)Extension results for slice regular functions of a quaternionic variable Adv. Math. 171 385-318