On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs

被引:35
作者
Jim Douglas
Frederico Furtado
Felipe Pereira
机构
[1] Purdue University,Department of Mathematics
[2] University of Campinas,Department of Mathematics
[3] Laboratório Nacional de Computação Científica/CNPq,undefined
关键词
Capillary Pressure; Domain Decomposition; Domain Decomposition Method; Adjoint Method; Heterogeneous Porous Medium;
D O I
10.1023/A:1011565228179
中图分类号
学科分类号
摘要
We present a new, naturally parallelizable, accurate numerical method for the solution of transport-dominated diffusion processes in heterogeneous porous media. For the discretization in time of one of the governing partial differential equations, we introduce a new characteristics-based procedure which is mass conservative, the modified method of characteristics with adjusted advection (MMOCAA). Hybridized mixed finite elements are used for the spatial discretization of the equations and a new strip-based domain decomposition procedure is applied towards the solution of the resulting algebraic problems.
引用
收藏
页码:155 / 190
页数:35
相关论文
共 59 条
[1]  
Antontsev S.N.(1972)On the solvability of boundary value problems for degenerate two-phase porous flow equations Dinamika Sploinoi Sredy 10 28-53
[2]  
Arbogast T.(1995)A characteristics-mixed finite element for advection-dominated transport problems SIAM J. Numer. Anal. 32 404-424
[3]  
Wheeler M.F.(1985)Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates RAURO Modélisation Mathématique et Analyse Numérique 19 7-32
[4]  
Arnold D.N.(1987)Mixed finite elements for second order elliptic problems in three variables Numer. Math. 51 237-250
[5]  
Brezzi F.(1987)Efficient rectangular mixed finite elements in two and three space variables RAURO Modélisation Mathématique et Analyse Numérique 21 581-604
[6]  
Brezzi F.(1985)Two families of mixed finite elements for second order elliptic problems Numer. Math. 47 217-235
[7]  
Douglas J.(1990)An Eulerian-Lagrangian local adjoint method for the advection-diffusion equation Adv. Water Resour. 13 187-206
[8]  
Durán R.(1989)Prismatic mixed finite elements for second order elliptic problems Calcolo 26 135-148
[9]  
Fortin M.(1983)The approximation of the pressure by a mixed method in the simulation of miscible displacement RAURO Anal. Numér. 17 17-33
[10]  
Brezzi F.(1983)A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media RAURO Anal. Numér. 17 249-265