Scalar field collapse in a conformally flat spacetime

被引:0
作者
Soumya Chakrabarti
Narayan Banerjee
机构
[1] Indian Institute of Science Education and Research,Department of Physical Sciences
[2] Kolkata,undefined
来源
The European Physical Journal C | 2017年 / 77卷
关键词
Dark Energy; Scalar Field; Apparent Horizon; Gravitational Collapse; Naked Singularity;
D O I
暂无
中图分类号
学科分类号
摘要
The collapse scenario of a scalar field along with a perfect fluid distribution was investigated for a conformally flat spacetime. The theorem for the integrability of an anharmonic oscillator has been utilized. For a pure power-law potential of the form ϕn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi }^{n+1}$$\end{document}, it was found that a central singularity is formed which is covered by an apparent horizon for n>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>0$$\end{document} and n<-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<-3$$\end{document}. Some numerical results have also been presented for a combination of two different powers of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} in the potential.
引用
收藏
相关论文
共 51 条
[1]  
Oppenheimer JR(1939)Critical phenomena in gravitational collapse: living reviews Phys. Rev. 56 455-undefined
[2]  
Snyder H(1997)undefined Class. Quant. Gravit. 14 2607-undefined
[3]  
Goncalves S(2005)undefined Class. Quant. Gravit. 22 2295-undefined
[4]  
Moss I(2000)undefined Phys. Rev. D 62 124006-undefined
[5]  
Giambo R(2007)undefined Mod. Phys. Lett. A 22 65-undefined
[6]  
Goncalves S(2013)undefined Pramana 80 439-undefined
[7]  
Goswami R(1994)undefined Ann. Math. 140 607-undefined
[8]  
Joshi PS(1987)undefined Phys. Rev. D 36 3575-undefined
[9]  
Ganguly K(1993)undefined Phys. Rev. Lett. 70 9-undefined
[10]  
Banerjee N(1995)undefined Class. Quant. Gravit. 11 1255-undefined