Mim-Width II. The Feedback Vertex Set Problem

被引:0
作者
Lars Jaffke
O-joung Kwon
Jan Arne Telle
机构
[1] University of Bergen,Department of Informatics
[2] Incheon National University,Department of Mathematics
来源
Algorithmica | 2020年 / 82卷
关键词
Graph width parameters; Mim-width; Graph classes; Feedback vertex set;
D O I
暂无
中图分类号
学科分类号
摘要
We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decomposition of mim-width w, we give an nO(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(w)}$$\end{document}-time algorithm that solves Feedback Vertex Set. This provides a unified polynomial-time algorithm for many well-known classes, such as Interval graphs, Permutation graphs, and Leaf power graphs (given a leaf root), and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as Circular Permutation and Circular k-Trapezoid graphs (given a circular k-trapezoid model) for fixed k. We complement our result by showing that Feedback Vertex Set is W[1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {W}[1]$$\end{document}-hard when parameterized by w and the hardness holds even when a linear branch decomposition of mim-width w is given.
引用
收藏
页码:118 / 145
页数:27
相关论文
共 44 条
[1]  
Belmonte R(2013)Graph classes with structured neighborhoods and algorithmic applications Theor. Comput. Sci. 511 54-65
[2]  
Vatshelle M(1994)On disjoint cycles Int. J. Found. Comput. Sci. 5 59-68
[3]  
Bodlaender HL(2015)Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth Inf. Comput. 243 86-111
[4]  
Bodlaender HL(2013)Feedback vertex set on graphs of low clique-width Eur. J. Comb. 34 666-679
[5]  
Cygan M(2008)Improved algorithms for feedback vertex set problems J. Comput. Syst. Sci. 74 1188-1198
[6]  
Kratsch S(1995)Fixed-parameter tractability and completeness I: basic results SIAM J. Comput. 24 873-921
[7]  
Nederlof J(2000)An 8-approximation algorithm for the subset feedback vertex set problem SIAM J. Comput. 30 1231-1252
[8]  
Bui-Xuan BM(2009)On the parameterized complexity of multiple-interval graph problems Theor. Comput. Sci. 410 53-61
[9]  
Suchỳ O(2000)On the clique-width of some perfect graph classes Int. J. Found. Comput. Sci. 11 423-443
[10]  
Telle JA(2006)Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization J. Comput. Syst. Sci. 72 1386-1396