Generalized Jensen’s functional on time scales via extended Montgomery identity

被引:0
作者
Sofia Ramzan
Ammara Nosheen
Rabia Bibi
Josip Pečarić
机构
[1] The University of Lahore (Sargodha Campus),Department of Mathematics and Statistics
[2] Abbottabad University of Science and Technology,Department of Mathematics
[3] RUDN University,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Jensen’s inequality; Convex functions; Diamond integrals; Time scales calculus;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we use Jensen’s inequality for diamond integrals and generalize it for n-convex functions with the help of an extended Montgomery identity. Moreover, the bounds have been suggested for identities associated with the generalized Jensen-type functional.
引用
收藏
相关论文
共 41 条
  • [1] Aljinovic A.A.(2005)On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula Tamkang J. Math. 36 199-218
  • [2] Pečarić J.(2005)On some Ostrowski type inequalities via Montgomery identity and Taylor’s formula II Tamkang J. Math. 36 279-301
  • [3] Aljinovic A.A.(2008)Diamond- J. Inequal. Appl. 2008 339-349
  • [4] Pečarić J.(2011) Jensen’s inequality on time scales Abstr. Appl. Anal. 2011 159-170
  • [5] Vukelic A.(2017)Integral inequalities on time scales via the theory of isotonic linear functionals Cogent Math. Stat. 13 264-269
  • [6] Ammi M.R.S.(2004)Generalization of Jensen-type linear functional on time scales via Lidstone polynomial Dyn. Syst. Appl. 9 1453-1462
  • [7] Ferreira R.A.C.(2008)Calculus of variations on time scales J. Inequal. Pure Appl. Math. 8 18-56
  • [8] Torres D.F.M.(2014)Ostrowski inequalities on time scales J. Math. Inequal. 26 175-193
  • [9] Anwar M.(2013)Some new Ostrowski-type bounds for the Cebyšev functional and applications Appl. Math. Lett. 38 993-1000
  • [10] Bibi R.(2015)Symmetric differentiation on time scales Bull. Malays. Math. Sci. Soc. 18 185-195