Partial symmetry and asymptotic behavior for some elliptic variational problems

被引:0
作者
Didier Smets
Michel Willem
机构
[1] Université de Paris 6,Laboratoire Jacques
[2] Université catholique de Louvain,Louis Lions
来源
Calculus of Variations and Partial Differential Equations | 2003年 / 18卷
关键词
Asymptotic Behavior; Variational Problem; Type Functional; Elementary Proof; Partial Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
A short elementary proof based on polarizations yields a useful (new) rearrangement inequality for symmetrically weighted Dirichlet type functionals. It is then used to answer some symmetry related open questions in the literature. The non symmetry of the Hénon equation ground states (previously proved in [19]) as well as their asymptotic behavior are analyzed more in depth. A special attention is also paid to the minimizers of the Caffarelli-Kohn-Nirenberg [8] inequalities.
引用
收藏
页码:57 / 75
页数:18
相关论文
共 11 条
  • [1] Baernstein undefined(1974)undefined Acta Math. 133 139-undefined
  • [2] Brezis undefined(1983)undefined Comm. Pure and Appl. Math. 36 437-undefined
  • [3] Brock undefined(2000)undefined Trans. AMS 352 1759-undefined
  • [4] Caffarelli undefined(1984)undefined Compositio Math. 53 259-undefined
  • [5] Catrina undefined(2001)undefined Comm. Pure Appl. Math. 54 229-undefined
  • [6] Gidas undefined(1979)undefined Comm. Math. Phys. 68 209-undefined
  • [7] Gidas undefined(1981)undefined Comm. Pure Appl. Math. 34 525-undefined
  • [8] Hénon undefined(1973)undefined Astronomy and Astrophysics 24 229-undefined
  • [9] Horiuchi undefined(1997)undefined J. Inequal. Appl. 1 275-undefined
  • [10] Polya undefined(1950)undefined CRASP 230 25-undefined