Universal tail profile of Gaussian multiplicative chaos

被引:0
作者
Mo Dick Wong
机构
[1] University of Oxford,Mathematical Institute
来源
Probability Theory and Related Fields | 2020年 / 177卷
关键词
Gaussian multiplicative chaos; Log-correlated Gaussian fields; Primary 60G57; Secondary 60G15; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study the tail probability of the mass of Gaussian multiplicative chaos. With the novel use of a Tauberian argument and Goldie’s implicit renewal theorem, we provide a unified approach to general log-correlated Gaussian fields in arbitrary dimension and derive precise first order asymptotics of the tail probability, resolving a conjecture of Rhodes and Vargas. The leading order is described by a universal constant that captures the generic property of Gaussian multiplicative chaos, and may be seen as the analogue of the Liouville unit volume reflection coefficients in higher dimensions.
引用
收藏
页码:711 / 746
页数:35
相关论文
共 41 条
[1]  
Barral J(2014)On exact scaling log-infinitely divisible cascades Probab. Theory Relat. Fields 160 521-565
[2]  
Jin X(2015)Basic properties of critical lognormal multiplicative chaos Ann. Probab. 43 2205-2249
[3]  
Barral J(2017)An elementary approach to Gaussian multiplicative chaos Electron. Commun. Probab. 22 1-12
[4]  
Kupiainen A(2018)Random Hermitian matrices and Gaussian multiplicative chaos Probab. Theory Relat. Fields 172 103-189
[5]  
Nikula M(2016)Extreme local extrema of two-dimensional discrete Gaussian free field Commun. Math. Phys. 345 271-304
[6]  
Saksman E(2018)Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian Free Field Adv. Math. 330 589-687
[7]  
Webb C(2011)Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field Commun. Pure Appl. Math. 65 1-20
[8]  
Berestycki N(2016)Liouville quantum gravity on the Riemann sphere Commun. Math. Phys. 342 869-108
[9]  
Berestycki N(2012)Forecasting volatility with the multifractal random walk model Math. Finance 22 83-393
[10]  
Webb C(2011)Liouville quantum gravity and KPZ Invent. Math. 185 333-330