Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime

被引:0
|
作者
Joe Zhiyu Chen
Isabel M. Oldengott
Giovanni Pierobon
Yvonne Y. Y. Wong
机构
[1] The University of New South Wales,Sydney Consortium for Particle Physics and Cosmology, School of Physics
[2] Université catholique de Louvain,Centre for Cosmology, Particle Physics and Phenomenology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider invisible neutrino decay νH→νl+ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _H \rightarrow \nu _l + \phi $$\end{document} in the ultra-relativistic limit and compute the neutrino anisotropy loss rate relevant for the cosmic microwave background (CMB) anisotropies. Improving on our previous work which assumed masslessνl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _l$$\end{document} and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, we reinstate in this work the daughter neutrino mass mνl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\nu l}$$\end{document} in a manner consistent with the experimentally determined neutrino mass splittings. We find that a nonzero mνl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\nu l}$$\end{document} introduces a new phase space factor in the loss rate ΓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _\mathrm{T}$$\end{document} proportional to (Δmν2/mνH2)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varDelta m_\nu ^2/m_{\nu _H}^2)^2$$\end{document} in the limit of a small squared mass gap between the parent and daughter neutrinos, i.e., ΓT∼(Δmν2/mνH2)2(mνH/Eν)5(1/τ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _\mathrm{T} \sim (\varDelta m_\nu ^2/m_{\nu H}^2)^2 (m_{\nu H}/E_\nu )^5 (1/\tau _0)$$\end{document}, where τ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _0$$\end{document} is the νH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _H$$\end{document} rest-frame lifetime. Using a general form of this result, we update the limit on τ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _0$$\end{document} using the Planck 2018 CMB data. We find that for a parent neutrino of mass mνH≲0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\nu H} \lesssim 0.1$$\end{document} eV, the new phase space factor weakens the constraint on its lifetime by up to a factor of 50 if Δmν2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta m_\nu ^2$$\end{document} corresponds to the atmospheric mass gap and up to 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{5}$$\end{document} if the solar mass gap, in comparison with naïve estimates that assume mνl=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\nu l}=0$$\end{document}. The revised constraints are (i) τ0≳(6→10)×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^0 > rsim (6 \rightarrow 10) \times 10^5$$\end{document} s and τ0≳(400→500)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^0 > rsim (400 \rightarrow 500)$$\end{document} s if only one neutrino decays to a daughter neutrino separated by, respectively, the atmospheric and the solar mass gap, and (ii) τ0≳(2→6)×107\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^0 > rsim (2 \rightarrow 6) \times 10^7$$\end{document} s in the case of two decay channels with one near-common atmospheric mass gap. In contrast to previous, naïve limits which scale as mνH5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\nu H}^5$$\end{document}, these mass spectrum-consistent τ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _0$$\end{document} constraints are remarkably independent of the parent mass and open up a swath of parameter space within the projected reach of IceCube and other neutrino telescopes in the next two decades.
引用
收藏
相关论文
共 21 条
  • [1] Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime
    Chen, Joe Zhiyu
    Oldengott, Isabel M.
    Pierobon, Giovanni
    Wong, Yvonne Y. Y.
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (07):
  • [2] Improved cosmological constraints on the neutrino mass and lifetime
    Guillermo Franco Abellán
    Zackaria Chacko
    Abhish Dev
    Peizhi Du
    Vivian Poulin
    Yuhsin Tsai
    Journal of High Energy Physics, 2022
  • [3] Improved cosmological constraints on the neutrino mass and lifetime
    Abellan, Guillermo Franco
    Chacko, Zackaria
    Dev, Abhish
    Du, Peizhi
    Poulin, Vivian
    Tsai, Yuhsin
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [4] Cosmological constraints on neutrino mass within consistent cosmological models
    庞业煌
    张雪
    黄庆国
    Chinese Physics C, 2024, (06) : 195 - 201
  • [5] Cosmological constraints on neutrino mass within consistent cosmological models
    庞业煌
    张雪
    黄庆国
    Chinese Physics C, 2024, 48 (06) : 195 - 201
  • [6] Cosmological constraints on neutrino mass within consistent cosmological models
    Pang, Ye-Huang
    Zhang, Xue
    Huang, Qing-Guo
    CHINESE PHYSICS C, 2024, 48 (06)
  • [7] Cosmological limits on the neutrino mass and lifetime
    Chacko, Zackaria
    Dev, Abhish
    Du, Peizhi
    Poulin, Vivian
    Tsai, Yuhsin
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [8] Cosmological neutrino mass detection: The best probe of neutrino lifetime
    Serpico, Pasquale D.
    PHYSICAL REVIEW LETTERS, 2007, 98 (17)
  • [9] SPONTANEOUSLY BROKEN LEPTON NUMBER AND COSMOLOGICAL CONSTRAINTS ON THE NEUTRINO MASS-SPECTRUM
    CHIKASHIGE, Y
    MOHAPATRA, RN
    PECCEI, RD
    PHYSICAL REVIEW LETTERS, 1980, 45 (24) : 1926 - 1929
  • [10] Constraints on the neutrino mass and mass hierarchy from cosmological observations
    Qing-Guo Huang
    Ke Wang
    Sai Wang
    The European Physical Journal C, 2016, 76