Steady states of a diffusive predator-prey model with prey-taxis and fear effect

被引:0
作者
Jianzhi Cao
Fang Li
Pengmiao Hao
机构
[1] Hebei University,Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science
[2] Zhejiang Normal University,Department of Mathematics
来源
Boundary Value Problems | / 2022卷
关键词
Diffusive predator-prey system; Prey-taxis; Steady states; Fear effect;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a diffusive predator-prey system with a prey-taxis response subject to Neumann boundary conditions is considered. The stability, the Hopf bifurcation, the existence of nonconstant steady states, and the stability of the bifurcation solutions of the system are analyzed. It is proved that a high level of prey-taxis can stabilize the system, the stability of the positive equilibrium is changed when χ crosses χ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi _{0}$\end{document}, and the Hopf bifurcation occurs for the small s. The system admits nonconstant positive solutions around (u¯,v¯,χi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\bar{u}, \bar{v}, \chi _{i} )$\end{document}, the stability of bifurcating solutions are controlled by ∫ΩΦi3dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\Omega} \Phi _{i}^{3} \,\mathrm{d}x$\end{document} and ∫ΩΦi4dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\Omega} \Phi _{i}^{4} \,\mathrm{d}x$\end{document}. Finally, numerical simulation results are carried out to verify the theoretical findings.
引用
收藏
相关论文
共 78 条
[11]  
Souna F.(2019)Impact of the fear effect in a prey-predator model incorporating a prey refuge Appl. Math. Comput. 356 399-415
[12]  
Lakmeche A.(2017)Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response J. Math. Biol. 75 233-270
[13]  
Djilali S.(1970)Initiation of slime mold aggregation viewed as an instability J. Theor. Biol. 26 551-573
[14]  
Wang X.(1987)Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search Am. Nat. 130 71-97
[15]  
Zanette L.(2009)Pattern formation in prey-taxis systems J. Biol. Dyn. 3 5847-5874
[16]  
Zou X.(2017)Nonconstant positive steady states and pattern formation of 1D prey-taxis systems J. Nonlinear Sci. 27 1054-1072
[17]  
Wang X.(2016)Pattern formation in Keller-Segel chemotaxis models with logistic growth Int. J. Bifurc. Chaos 26 4197-4212
[18]  
Zou X.(2016)Global existence of solutions and uniform peristence of a diffusive predator-pery model with prey-taxis J. Differ. Equ. 260 1-24
[19]  
Panja P.(2022)Spatially nonhomogeneous periodic patterns in a delayed predator-prey model with predator-taxis diffusion Appl. Math. Lett. 131 6741-6762
[20]  
Souna F.(2019)Dynamics and pattern formations in a three-species predator-prey model with two prey-taxis J. Math. Anal. Appl. 475 1397-1420