Steady states of a diffusive predator-prey model with prey-taxis and fear effect

被引:0
作者
Jianzhi Cao
Fang Li
Pengmiao Hao
机构
[1] Hebei University,Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science
[2] Zhejiang Normal University,Department of Mathematics
来源
Boundary Value Problems | / 2022卷
关键词
Diffusive predator-prey system; Prey-taxis; Steady states; Fear effect;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a diffusive predator-prey system with a prey-taxis response subject to Neumann boundary conditions is considered. The stability, the Hopf bifurcation, the existence of nonconstant steady states, and the stability of the bifurcation solutions of the system are analyzed. It is proved that a high level of prey-taxis can stabilize the system, the stability of the positive equilibrium is changed when χ crosses χ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi _{0}$\end{document}, and the Hopf bifurcation occurs for the small s. The system admits nonconstant positive solutions around (u¯,v¯,χi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\bar{u}, \bar{v}, \chi _{i} )$\end{document}, the stability of bifurcating solutions are controlled by ∫ΩΦi3dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\Omega} \Phi _{i}^{3} \,\mathrm{d}x$\end{document} and ∫ΩΦi4dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int _{\Omega} \Phi _{i}^{4} \,\mathrm{d}x$\end{document}. Finally, numerical simulation results are carried out to verify the theoretical findings.
引用
收藏
相关论文
共 78 条
[1]  
Cui R.(2014)Strong Allee effect in a diffusive predator-prey system with a protection zone J. Differ. Equ. 256 108-129
[2]  
Shi J.(2016)Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems J. Differ. Equ. 260 3495-3523
[3]  
Wu B.(2006)Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge J. Differ. Equ. 231 534-550
[4]  
Wang J.(2021)Spatiotemporal patterns in a diffusive predator-prey system with Leslie-Gower term and social behavior for the prey Math. Methods Appl. Sci. 44 13920-13944
[5]  
Wei J.(2020)Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting Chaos Solitons Fractals 140 1179-1204
[6]  
Shi J.(2016)Modelling the fear effect in predator-prey interactions J. Math. Biol. 73 775-805
[7]  
Ko W.(2018)Pattern formation of a predator-prey model with the cost of anti-predator behaviors Math. Biosci. Eng. 15 651-669
[8]  
Ryu K.(2022)Dynamics of a stage structured predator-prey model with fear effects Discontin. Nonlinearity Complex. 11 597-618
[9]  
Souna F.(2021)Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear effect Eur. Phys. J. Plus 136 328-337
[10]  
Lakmeche A.(2023)Complex pattern formations induced by the presence of cross-diffusion in a generalized predator-prey model incorporating the Holling type functional response and generalization of habitat complexity effect Math. Comput. Simul. 204 239-257