On a class of quasilinear Schrödinger equations with vanishing potentials and mixed nonlinearities

被引:0
作者
Hongxia Shi
Haibo Chen
机构
[1] Hunan First Normal University,School of Mathematics and Computational Science
[2] Central South University,School of Mathematics and Statistics
来源
Indian Journal of Pure and Applied Mathematics | 2019年 / 50卷
关键词
Quasilinear Schrödinger equations; mixed nonlinearity; vanishing potential; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following generalized quasilinear Schrödinger equations with mixed nonlinearity {−div(g2(u)∇u)+g(u)g′(u)|∇u|2+V(x)u=K(x)f(u)+λξ(x)g(u)|G(u)|p−2G(u),x∈RN,u∈D1,2(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} { - div({g^2}(u)\nabla u) + g(u)g'(u){{\left| {\nabla u} \right|}^2} + V(x)u = K(x)f(u) + \lambda \xi (x)g(u){{\left| {G(u)} \right|}^{p - 2}}G(u), x \in {\mathbb{R}^N},} \\ {u \in {\mathcal{D}^{1,2}}({\mathbb{R}^N}),} \end{array}} \right.$$\end{document} where N ≥ 3, V, K are nonnegative continuous functions and f is a continuous function with a quasicritical growth. Using a change of variable as G(u)=∫0ug(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(u) = \int_0^u {g(t)\rm{dt}}$$\end{document}, the above quasilinear equation is reduced to a semilinear one. Under some suitable assumptions, we prove that the above equation has at least one nontrivial solution by working in weighted Sobolev spaces and employing the variational methods.
引用
收藏
页码:923 / 936
页数:13
相关论文
共 53 条
  • [1] Alves C O(2013)Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinity J. Differential Equations 254 1977-1991
  • [2] Souto M A S(1993)Dynamical modulation of an ultrashort high-intensity laser pulse in matter JETP 77 562-573
  • [3] Borovskii A V(1993)Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma Phys. Fluids B 5 3539-3550
  • [4] Galkin A L(1993)Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse Phys. Rev. Lett. 70 2082-2085
  • [5] Brandi H S(2004)Solutions for a quasilinear Schrödinger equations: A dual approach Nonlinear Anal. TMA 56 213-226
  • [6] Manus C(2014)Nodal soliton solutions for generalized quasilinear Schrödinger equations J. Math. Phys. 55 051501-1262
  • [7] Mainfray G(2016)Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations J. Differential Equations 260 1228-147
  • [8] Lehner T(2015)Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth J. Differential Equations 258 115-3267
  • [9] Bonnaud G(1981)Large-amplitude quasi-solitons in superfluid films J. Phys. Soc. Japan 50 3262-448
  • [10] Chen X L(2002)Soliton solutions for quasilinear Schrödinger equations I Proc. Amer. Math. Soc. 131 441-493