A Competitive Analysis for Balanced Transactional Memory Workloads

被引:0
作者
Gokarna Sharma
Costas Busch
机构
[1] Louisiana State University,Department of Computer Science
来源
Algorithmica | 2012年 / 63卷
关键词
Transactional memory; Contention management; Balanced workloads; Transaction scheduling; Competitive ratios; Concurrency control;
D O I
暂无
中图分类号
学科分类号
摘要
We consider transactional memory contention management in the context of balanced workloads, where if a transaction is writing, the number of write operations it performs is a constant fraction of its total reads and writes. We explore the theoretical performance boundaries of contention management in balanced workloads from the worst-case perspective by presenting and analyzing two new polynomial time contention management algorithms. We analyze the performance of a contention management algorithm by comparison with an optimal offline contention management algorithm to provide a competitive ratio. The first algorithm Clairvoyant is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{s})$\end{document}-competitive, where s is the number of shared resources. This algorithm depends on explicitly knowing the conflict graph at each time step of execution. The second algorithm Non-Clairvoyant is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{s} \cdot \log n)$\end{document}-competitive, with high probability, which is only a O(log n) factor worse, but does not require knowledge of the conflict graph, where n is the number of transactions. Both of these algorithms are greedy. We also prove that the performance of Clairvoyant is close to optimal, since there is no polynomial time contention management algorithm for the balanced transaction scheduling problem that is better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O((\sqrt{s})^{1-\varepsilon})$\end{document}-competitive for any constant ε>0, unless NP⊆ZPP. To our knowledge, these results are significant improvements over the best previously known O(s) competitive ratio bound.
引用
收藏
页码:296 / 322
页数:26
相关论文
共 50 条
[31]   Transactional Interference-Less Balanced Tree [J].
Hassan, Ahmed ;
Palmieri, Roberto ;
Ravindran, Binoy .
DISTRIBUTED COMPUTING (DISC 2015), 2015, 9363 :325-340
[32]   Tradeoffs in transactional memory virtualization [J].
Chung, JaeWoong ;
Minh, Chi Cao ;
McDonald, Austen ;
Skare, Travis ;
Chafi, Hassan ;
Carlstrom, Brian D. ;
Kozyrakis, Christos ;
Olukotun, Kunle .
ACM SIGPLAN NOTICES, 2006, 41 (11) :371-381
[33]   Nested Parallelism in Transactional Memory [J].
Agrawal, Kunal ;
Fineman, Jeremy T. ;
Sukha, Jim .
PPOPP'08: PROCEEDINGS OF THE 2008 ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, 2008, :163-174
[34]   Transactional Memory: Glimmer of a Theory [J].
Guerraoui, Rachid ;
Kapalka, Michal .
COMPUTER AIDED VERIFICATION, PROCEEDINGS, 2009, 5643 :1-15
[35]   An extension for Transactional Memory in OpenMP [J].
Jardim, Andre D. ;
Oliveira, Kevin ;
Cardoso, Diogo J. ;
Di Domenico, Daniel ;
Du Bois, Andre R. ;
Cavalheiro, Gerson G. H. .
25TH BRAZILIAN SYMPOSIUM ON PROGRAMMING LANGUAGES, SBLP 2021, 2021, :58-65
[36]   Deadline-Aware Scheduling for Software Transactional Memory [J].
Maldonado, Walther ;
Marlier, Patrick ;
Felber, Pascal ;
Lawall, Julia ;
Muller, Giller ;
Riviere, Etienne .
2011 IEEE/IFIP 41ST INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN), 2011, :257-268
[37]   A Waiting Mechanism with Conflict Prediction on Hardware Transactional Memory [J].
Mashita, Keisuke ;
Tabuchi, Maya ;
Yamada, Ryohei ;
Tsumura, Tomoaki .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (12) :2860-2870
[38]   Mileage-based Contention Management in Transactional Memory [J].
Choi, Woojin ;
Zhao, Lihang ;
Draper, Jeff .
PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT'12), 2012, :471-471
[39]   Investigating Transactional Memory for High Performance Embedded Systems [J].
Piatka, Christian ;
Amslinger, Rico ;
Haas, Florian ;
Weis, Sebastian ;
Altmeyer, Sebastian ;
Ungerer, Theo .
ARCHITECTURE OF COMPUTING SYSTEMS, ARCS 2020, 2020, 12155 :97-108
[40]   PIM-STM: Software Transactional Memory for Processing-In-Memory Systems [J].
Lopes, Andre ;
Castro, Daniel ;
Romano, Paolo .
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2024, VOL 2, 2024, :897-911