Properly immersed minimal surfaces in a slab of H×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H} \times {\mathbb {R}}}$$\end{document}, H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} the hyperbolic plane

被引:0
作者
P. Collin
L. Hauswirth
H. Rosenberg
机构
[1] Université Paul Sabatier,Institut de mathématiques de Toulouse
[2] Université Paris-Est,undefined
[3] LAMA (UMR 8050),undefined
[4] UPEMLV,undefined
[5] UPEC,undefined
[6] CNRS,undefined
[7] Instituto Nacional de Matematica Pura e Aplicada (IMPA),undefined
关键词
Differential geometry; Minimal surfaces; Homogeneous spaces; 53A10;
D O I
10.1007/s00013-015-0744-7
中图分类号
学科分类号
摘要
We prove that the ends of a properly immersed simply or one connected minimal surface in H×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{H}} \times {\mathbb{R}}}$$\end{document} contained in a slab of height less than π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi}$$\end{document} of H×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{H}} \times {\mathbb{R}}}$$\end{document} are multi-graphs. When such a minimal surface is properly embedded, then the ends are graphs. When such a minimal surface is properly embedded and simply connected, it is an entire graph.
引用
收藏
页码:471 / 484
页数:13
相关论文
共 7 条
  • [1] Bernstein J.(2011)Conformal Structure of Minimal Surfaces with Finite Topology Comment. Math. Helv. 86 353-381
  • [2] Brenner C.(2010)Construction of harmonic diffeomorphisms and minimal graphs Annals of Mathematics 172 1879-1906
  • [3] Collin P.(2007)Isometric Immersion into three-dimensional homogeneous manifolds Comment. Math. Helv. 82 87-131
  • [4] Rosenberg H.(1976)Removability of singular points on surfaces of bounded mean curvature J. Differential Geometry 11 345-350
  • [5] Daniel B.(2006)Minimal surfaces of Riemann type in three-dimensional product manifolds Pacific J. Math. 224 91-117
  • [6] Gulliver R.(undefined)undefined undefined undefined undefined-undefined
  • [7] Hauswirth L.(undefined)undefined undefined undefined undefined-undefined