Discrete-time quantum walks on Cayley graphs of Dihedral groups using generalized Grover coins

被引:1
作者
Sarkar, Rohit Sarma [1 ]
Adhikari, Bibhas [1 ,2 ]
机构
[1] IIT Kharagpur, Dept Math, Kharagpur, India
[2] Fujitsu Res Amer Inc, Santa Clara, CA 95054 USA
关键词
Quantum walks; Cayley graphs; Periodicity; Localization; PERIODICITY; LOCALIZATION; COMPUTATION;
D O I
10.1007/s11128-024-04385-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study discrete-time quantum walks on Cayley graphs corresponding to Dihedral groups, which are graphs with both directed and undirected edges. We consider the walks with coins that are (real) linear combinations of permutation matrices of order three. We show that the walks are periodic only for coins that are permutation or negative of a permutation matrix. Finally, we investigate the localization property of the walks through numerical simulations and observe that the walks localize for a wide range of coins for different sizes of the graphs.
引用
收藏
页数:28
相关论文
共 46 条
[1]   Quantum walks on Cayley graphs [J].
Acevedo, OL ;
Gobron, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (03) :585-599
[2]  
Acevedo OL, 2008, QUANTUM INF COMPUT, V8, P68
[3]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[4]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, Dorit ;
Van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :166-194
[5]  
Ash R. B., 2000, Abstract Algebra: The Basic Graduate Year
[6]  
Banerjee A, 2022, Arxiv, DOI arXiv:2203.15148
[7]   Hamiltonian simulation with nearly optimal dependence on all parameters [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Kothari, Robin .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :792-809
[8]   Quantum walks with a one-dimensional coin [J].
Bisio, Alessandro ;
D'Ariano, Giacomo Mauro ;
Erba, Marco ;
Perinotti, Paolo ;
Tosini, Alessandro .
PHYSICAL REVIEW A, 2016, 93 (06)
[9]   Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning [J].
Caha, Libor ;
Landau, Zeph ;
Nagaj, Daniel .
PHYSICAL REVIEW A, 2018, 97 (06)
[10]  
Childs A.M., 2003, P 35 ACM S THEOR COM, P59, DOI [10.1145/780542.780552, DOI 10.1145/780542.780552]