Boundedness of the Riesz Potential in Local Morrey-Type Spaces

被引:0
作者
Victor I. Burenkov
Amiran Gogatishvili
Vagif S. Guliyev
Rza Ch. Mustafayev
机构
[1] Padova University,Dipartimento di matematica pura ed applicata
[2] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Department of Mathematics
[3] Ahi Evran University,Institute of Mathematics and Mechanics
[4] Academy of Sciences of Azerbaijan,undefined
来源
Potential Analysis | 2011年 / 35卷
关键词
Riesz potential; Local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of boundedness of the Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:67 / 87
页数:20
相关论文
共 50 条
[41]   RIESZ POTENTIALS IN THE LOCAL VARIABLE MORREY-LORENTZ SPACES AND SOME APPLICATIONS [J].
Aykol, Canay ;
Hasanov, Javanshir .
MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) :141-151
[42]   On the Boundedness of the Fractional Maximal Operator, the Riesz Potential, and Their Commutators in Orlicz Spaces [J].
Aliev, A. R. ;
Aliev, R. A. .
MATHEMATICAL NOTES, 2024, 115 (3-4) :453-462
[43]   BOUNDEDNESS OF RIESZ POTENTIALS IN NONHOMOGENEOUS SPACES [J].
胡国恩 ;
孟岩 ;
杨大春 .
ActaMathematicaScientia, 2008, (02) :371-382
[44]   Boundedness of Riesz potentials in nonhomogeneous spaces [J].
Hu Guoen ;
Meng Yan ;
Yang Dachun .
ACTA MATHEMATICA SCIENTIA, 2008, 28 (02) :371-382
[45]   Riesz potential and its commutators on generalized weighted Orlicz-Morrey spaces [J].
Guliyev, Vagif S. ;
Deringoz, Fatih .
MATHEMATISCHE NACHRICHTEN, 2022, 295 (04) :706-724
[46]   Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces [J].
Gogatishvili, Amiran ;
Mustafayev, Rza .
COLLECTANEA MATHEMATICA, 2012, 63 (01) :11-28
[47]   Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces [J].
Fatih Deringoz ;
Vagif S Guliyev ;
Sabir G Hasanov .
Journal of Inequalities and Applications, 2016
[48]   COMMUTATORS OF RIESZ POTENTIAL IN THE VANISHING GENERALIZED WEIGHTED MORREY SPACES WITH VARIABLE EXPONENT [J].
Guliyev, Vagif S. ;
Hasanov, Javanshir J. ;
Badalov, Xayyam A. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01) :331-351
[49]   Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces [J].
Amiran Gogatishvili ;
Rza Mustafayev .
Collectanea Mathematica, 2012, 63 :11-28
[50]   Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces [J].
Deringoz, Fatih ;
Guliyev, Vagif S. ;
Hasanov, Sabir G. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,