Boundedness of the Riesz Potential in Local Morrey-Type Spaces

被引:0
作者
Victor I. Burenkov
Amiran Gogatishvili
Vagif S. Guliyev
Rza Ch. Mustafayev
机构
[1] Padova University,Dipartimento di matematica pura ed applicata
[2] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Department of Mathematics
[3] Ahi Evran University,Institute of Mathematics and Mechanics
[4] Academy of Sciences of Azerbaijan,undefined
来源
Potential Analysis | 2011年 / 35卷
关键词
Riesz potential; Local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of boundedness of the Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:67 / 87
页数:20
相关论文
共 50 条
  • [31] Riesz potential on the Heisenberg group and modified Morrey spaces
    Guliyev, Vagif S.
    Mammadov, Yagub Y.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 189 - 212
  • [32] Riesz potential in generalized Morrey spaces on the Heisenberg group
    Guliyev V.S.
    Eroglu A.
    Mammadov Y.Y.
    [J]. Journal of Mathematical Sciences, 2013, 189 (3) : 365 - 382
  • [33] Marcinkiewicz-type interpolation theorem for Morrey-type spaces and its corollaries
    Burenkov, V. I.
    Chigambayeva, D. K.
    Nursultanov, E. D.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (01) : 87 - 108
  • [34] Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 707 - 744
  • [35] BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON SPACES OF HOMOGENEOUS TYPE
    Liu, Liguang
    Yang, Dachun
    Zhou, Yuan
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 867 - 885
  • [36] On the limiting case for boundedness of the B-Riesz potential in B-Morrey spacesО предельном случае ограниченности потснциала B-Рисс в пространствах B-Моррей
    Vagif S. Guliyev
    Javanshir J. Hasanov
    Yusuf Zeren
    [J]. Analysis Mathematica, 2009, 35 (2) : 87 - 97
  • [37] Boundedness for p-Adic Riesz Potential with Rough Kernel and its Commutators on Two-Weighted Morrey, Herz Spaces
    Hong, Ngo Thi
    Ha, Ly Kim
    Duong, Dao Van
    [J]. P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2025, 17 (01) : 42 - 61
  • [38] Boundedness of the potential operators and their commutators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets
    Aykol, Canay
    Badalov, Xayyam A.
    Hasanov, Javanshir J.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (02) : 423 - 438
  • [39] Boundedness of the potential operators and their commutators in the local “complementary” generalized variable exponent Morrey spaces on unbounded sets
    Canay Aykol
    Xayyam A. Badalov
    Javanshir J. Hasanov
    [J]. Annals of Functional Analysis, 2020, 11 : 423 - 438
  • [40] A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators
    Fofana I.
    Faléa F.R.
    Kpata B.A.
    [J]. Afrika Matematika, 2015, 26 (5-6) : 717 - 739