Boundedness of the Riesz Potential in Local Morrey-Type Spaces

被引:0
作者
Victor I. Burenkov
Amiran Gogatishvili
Vagif S. Guliyev
Rza Ch. Mustafayev
机构
[1] Padova University,Dipartimento di matematica pura ed applicata
[2] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Department of Mathematics
[3] Ahi Evran University,Institute of Mathematics and Mechanics
[4] Academy of Sciences of Azerbaijan,undefined
来源
Potential Analysis | 2011年 / 35卷
关键词
Riesz potential; Local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of boundedness of the Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:67 / 87
页数:20
相关论文
共 50 条
[21]   Two-weight inequalities for Riesz potential and its commutators on weighted global Morrey-type spaces GMp,?,? ? (Rn) [J].
Avsar, Cahit ;
Aykol, Canay ;
Hasanov, Javanshir J. ;
Musayev, Ali M. .
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 (01) :33-50
[22]   RECENT PROGRESS IN STUDYING THE BOUNDEDNESS OF CLASSICAL OPERATORS OF REAL ANALYSIS IN GENERAL MORREY-TYPE SPACES. I [J].
Burenkov, V. I. .
EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (03) :11-32
[23]   RECENT PROGRESS IN STUDYING THE BOUNDEDNESS OF CLASSICAL OPERATORS OF REAL ANALYSIS IN GENERAL MORREY-TYPE SPACES. II [J].
Burenkov, V. I. .
EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (01) :21-45
[24]   The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces [J].
Umarkhadzhiev, Salaudin .
OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 :363-373
[25]   Riesz potential in the local Morrey-Lorentz spaces and some applications [J].
Guliyev, Vagif S. ;
Kucukaslan, Abdulhamit ;
Aykol, Canay ;
Serbetci, Ayhan .
GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) :557-567
[26]   YOUNG'S INEQUALITY FOR CONVOLUTIONS IN MORREY-TYPE SPACES [J].
Burenkov, V. I. ;
Tararykova, T. V. .
EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (02) :92-99
[27]   Compactness of Commutators of Riesz Potential on Morrey Spaces [J].
Yanping Chen ;
Yong Ding ;
Xinxia Wang .
Potential Analysis, 2009, 30 :301-313
[28]   Compactness of Commutators of Riesz Potential on Morrey Spaces [J].
Chen, Yanping ;
Ding, Yong ;
Wang, Xinxia .
POTENTIAL ANALYSIS, 2009, 30 (04) :301-313
[29]   B-RIESZ POTENTIAL IN B-LOCAL MORREY-LORENTZ SPACES [J].
Kaya, Esra ;
Aykol, Canay .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (02) :437-449
[30]   Riesz potential on the Heisenberg group and modified Morrey spaces [J].
Guliyev, Vagif S. ;
Mammadov, Yagub Y. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01) :189-212