On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators

被引:0
|
作者
Jacek Dziubański
Jacek Zienkiewicz
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
关键词
Hardy spaces; Schrödinger operators; 42B30; 35J10; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=−Δ+V is a Schrödinger operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document}, d≥3, V≥0. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}_{L}$\end{document} denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δ≤w(x)≤C, such that the mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$\end{document} is an isomorphism from the Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{L}^{1}$\end{document} onto the classical Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\mathbb{R}^{d})$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$\end{document} belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}(\mathbb{R}^{d})$\end{document}.
引用
收藏
页码:447 / 456
页数:9
相关论文
共 50 条
  • [21] Hardy type estimates for Riesz transforms associated with Schrödinger operators
    Yue Hu
    Yueshan Wang
    Analysis and Mathematical Physics, 2019, 9 : 275 - 287
  • [22] Riesz transforms on the Hardy space associated with generalized Schrödinger operators
    Yixin Wang
    Pengtao Li
    Journal of Inequalities and Applications, 2019
  • [23] Besov and Hardy Spaces Associated with the Schrödinger Operator on the Heisenberg Group
    Ruming Gong
    Ji Li
    Liang Song
    Journal of Geometric Analysis, 2014, 24 : 144 - 168
  • [24] bmo ρ(ω) Spaces and Riesz transforms associated to Schrdinger operators
    ZHU Hua
    ZHANG Qian
    ScienceChina(Mathematics), 2016, 59 (10) : 1995 - 2018
  • [25] bmoρ(ω) spaces and Riesz transforms associated to Schrödinger operators
    Hua Zhu
    Qian Zhang
    Science China Mathematics, 2016, 59 : 1995 - 2018
  • [26] The boundedness of commutators associated with Schrödinger operators on Herz spaces
    Pengtao Li
    Xin Wan
    Journal of Inequalities and Applications, 2016
  • [27] Generalized Morrey Spaces Associated to Schrödinger Operators and Applications
    Nguyen Ngoc Trong
    Le Xuan Truong
    Czechoslovak Mathematical Journal, 2018, 68 : 953 - 986
  • [28] Hardy spaces H1 for Schrödinger operators with compactly supported potentials
    Jacek Dziubański
    Jacek Zienkiewicz
    Annali di Matematica Pura ed Applicata (1923 -), 2005, 184 : 315 - 326
  • [29] Optimal Hardy inequalities for Schrödinger operators on graphs
    Matthias Keller
    Yehuda Pinchover
    Felix Pogorzelski
    Communications in Mathematical Physics, 2018, 358 : 767 - 790
  • [30] Carleson measures, BMO spaces and balayages associated to Schrödinger operators
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Liang Song
    LiXin Yan
    Science China Mathematics, 2017, 60 : 2077 - 2092