On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators

被引:0
作者
Jacek Dziubański
Jacek Zienkiewicz
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
来源
Journal of Fourier Analysis and Applications | 2013年 / 19卷
关键词
Hardy spaces; Schrödinger operators; 42B30; 35J10; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=−Δ+V is a Schrödinger operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document}, d≥3, V≥0. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}_{L}$\end{document} denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δ≤w(x)≤C, such that the mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$\end{document} is an isomorphism from the Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{L}^{1}$\end{document} onto the classical Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\mathbb{R}^{d})$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$\end{document} belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}(\mathbb{R}^{d})$\end{document}.
引用
收藏
页码:447 / 456
页数:9
相关论文
共 14 条
  • [1] Coifman R.(1974)A real variable characterization of Stud. Math. 51 269-274
  • [2] Dziubański J.(2005)Hardy spaces Ann. Mat. Pura Appl. 184 315-326
  • [3] Zienkiewicz J.(2012) for Schrödinger operators with compactly supported potentials Rev. Mat. Iberoam. 28 1035-1060
  • [4] Dziubański J.(1972)On Hardy spaces associated with certain Schrödinger operators in dimension 2 Acta Math. 129 137-193
  • [5] Zienkiewicz J.(2011) spaces of several variables Mem. Am. Math. Soc. 214 93-101
  • [6] Fefferman C.(1978)Hardy spaces associated with non-negative self-adjoint operators satisfying Davies-Gafney estimates Stud. Math. 62 573-593
  • [7] Stein E.M.(1997)A decomposition of Int. Math. Res. Not. 12 undefined-undefined
  • [8] Hofmann S.(undefined) in terms of atoms undefined undefined undefined-undefined
  • [9] Lu G.Z.(undefined)Stability of undefined undefined undefined-undefined
  • [10] Mitrea D.(undefined)-spectrum of generalized Schrödinger operators and equivalence of Green’s functions undefined undefined undefined-undefined