Automatic detection and classification of EEG artifacts using fuzzy kernel SVM and wavelet ICA (WICA)

被引:63
作者
Yasoda, K. [1 ]
Ponmagal, R. S. [2 ]
Bhuvaneshwari, K. S. [3 ]
Venkatachalam, K. [4 ]
机构
[1] SNS Coll Technol, Dept Biomed Engn, Coimbatore, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Sch Comp, Kanchipuram, Tamil Nadu, India
[3] Karpagam Coll Engn, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
[4] Univ Bhopal, Vellore Inst Technol, Sch CSE, Bhopal, India
关键词
Wavelet ICA (WICA); Fuzzy kernel support vector machine (FKSVM); Aircraft; ECG signal; REMOVAL; ELECTROENCEPHALOGRAMS; POTENTIALS; EXTRACTION;
D O I
10.1007/s00500-020-04920-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) is almost contaminated with many artifacts while recording the brain signal activity. Clinical diagnostic and brain computer interface applications frequently require the automated removal of artifacts. In digital signal processing and visual assessment, EEG artifact removal is considered to be the key analysis technique. Nowadays, a standard method of dimensionality reduction technique like independent component analysis (ICA) and wavelet transform combination can be explored for removing the EEG signal artifacts. Manual artifact removal is time-consuming; in order to avoid this, a novel method of wavelet ICA (WICA) using fuzzy kernel support vector machine (FKSVM) is proposed for removing and classifying the EEG artifacts automatically. Proposed method presents an efficient and robust system to adopt the robotic classification and artifact computation from EEG signal without explicitly providing the cutoff value. Furthermore, the target artifacts are removed successfully in combination with WICA and FKSVM. Additionally, proposes the various descriptive statistical features such as mean, standard deviation, variance, kurtosis and range provides the model creation technique in which the training and testing the data of FKSVM is used to classify the EEG signal artifacts. The future work to implement various machine learning algorithm to improve performance of the system.
引用
收藏
页码:16011 / 16019
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 1998, Independent component analysis
[2]   A flexible classification approach with optimal generalisation performance: support vector machines [J].
Belousov, AI ;
Verzakov, SA ;
von Frese, J .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 64 (01) :15-25
[3]   STATIONARITY OF THE EEG SERIES [J].
BLANCO, S ;
GARCIA, H ;
QUIROGA, RQ ;
ROMANELLI, L ;
ROSSO, OA .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1995, 14 (04) :395-399
[4]  
Boudet Samuel, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P5719
[5]  
Breiman Leo, 1992, Probability, V7, DOI DOI 10.1137/1.9781611971286
[6]   Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis [J].
Castellanos, Nazareth P. ;
Makarov, Valeri A. .
JOURNAL OF NEUROSCIENCE METHODS, 2006, 158 (02) :300-312
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]  
DEBEER NAM, 1995, J CLIN MONITOR, V11, P381
[9]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[10]   Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis [J].
Delorme, Arnaud ;
Sejnowski, Terrence ;
Makeig, Scott .
NEUROIMAGE, 2007, 34 (04) :1443-1449