A maximum rank problem for degenerate elliptic fully nonlinear equations

被引:0
作者
Pengfei Guan
D. H. Phong
机构
[1] McGill University,Department of Mathematics
[2] Columbia University,Department of Mathematics
来源
Mathematische Annalen | 2012年 / 354卷
关键词
Riemannian Manifold; Nonlinear Equation; Dirichlet Problem; Interior Point; Free Boundary Problem;
D O I
暂无
中图分类号
学科分类号
摘要
The solutions to the Dirichlet problem for two degenerate elliptic fully nonlinear equations in n + 1 dimensions, namely the real Monge–Ampère equation and the Donaldson equation, are shown to have maximum rank in the space variables when n ≤ 2. A constant rank property is also established for the Donaldson equation when n = 3.
引用
收藏
页码:147 / 169
页数:22
相关论文
共 40 条
  • [1] Alvarez O.(1997)Convexity viscosity solutions and state constraints J. Math. Pure Appl. 76 265-288
  • [2] Lasry J.M.(2009)A microscopic convexity principle for nonlinear partial differential equations Invent. Math. 177 307-335
  • [3] Lions P.L.(2010)A structural condition for microscopic convexity principle Discret. Contin. Dyn. Syst. 28 789-807
  • [4] Bian B.(1976)On extensions of the Brunn–Minkowski and Prokopa–Leindler theorems, including inequalities for log-concave functions with an application to the diffusion equation J. Funct. Anal. 22 366-389
  • [5] Guan P.(1985)“Convexity of solutions of some semilinear elliptic equations” Duke Math Duke Math. J. 52 431-455
  • [6] Bian B.(2007)A constant rank theorem for solutions of fully nonlinear elliptic equations Commun. Pure Appl. Math. 60 1769-1791
  • [7] Guan P.(1984)The Dirichlet problem for non-linear second-order elliptic equations I. Monge–Ampère equations Commun. Pure Appl. Math. XXXVII 369-402
  • [8] Brascamp H.J.(2000)The space of Kähler metrics J. Differ. Geom. 56 189-234
  • [9] Lieb E.H.(1999)Symmetric spaces, Kähler geometry, and Hamiltonian dynamics Am. Math. Soc. Transl. 196 13-33
  • [10] Caffarelli L.(1999)The Dirichlet problem for Hessian equations on Riemannian manifolds Calc. Var. Partial Differ. Equ. 8 45-69