Compatible Poisson Brackets on Lie Algebras

被引:0
作者
A. V. Bolsinov
A. V. Borisov
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2002年 / 72卷
关键词
compatible Poisson brackets; compatible Hamiltonian representation; Lax representation; integrable Hamiltonian system; bi-Hamiltonian vector field; Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the relationship between the representation of an integrable system as an L-A-pair with a spectral parameter and the existence of two compatible Hamiltonian representations of this system. We consider examples of compatible Poisson brackets on Lie algebras, as well as the corresponding integrable Hamiltonian systems and Lax representations.
引用
收藏
页码:10 / 30
页数:20
相关论文
共 32 条
  • [1] Bolsinov A. V.(1991)Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution Izv. Akad. Nauk SSSR Ser. Mat. 55 68-92
  • [2] Gelfand I. M.(1979)Hamiltonian operators and related algebraic structures Funktsional. Anal. i Prilozhen. 13 13-30
  • [3] Dorfman I. Y.(1983)The characteristic property of the inertia tensor of a multidimensional rigid body Uspekhi Mat. Nauk 38 201-202
  • [4] Meshcheryakov M. V.(1996)Theory of tensor invariants of integrable Hamiltonian systems I. Incompatible Poisson structures Comm. Math. Phys. 180 529-586
  • [5] Bogoyavlenskii O. I.(1997)Theory of tensor invariants of integrable Hamiltonian systems II. Theorem on symmetries and its applications Comm. Math. Phys. 184 301-365
  • [6] Bogoyavlenskii O. I.(1978)A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-1162
  • [7] Magri F.(2000)Veronese webs for bi-Hamiltonian structures of higher corank Poisson Geometry 51 251-261
  • [8] Panasyuk A.(1991)Webs, Veronese curves, and bi-Hamiltonian systems Funktsional. Anal. i Prilozhen. 99 150-178
  • [9] Gelfand I. M.(1983)What is the classical Funktsional. Anal. i Prilozhen. 17 17-33
  • [10] Zakharevich I. S.(1990)-matrix? Phys. Lett. A 148 4-578