A partition-based relaxation for Steiner trees

被引:0
作者
Jochen Könemann
David Pritchard
Kunlun Tan
机构
[1] University of Waterloo,Department of Combinatorics and Optimization
[2] Microsoft Corporation,undefined
来源
Mathematical Programming | 2011年 / 127卷
关键词
68W25; 68R10; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
The Steiner tree problem is a classical NP-hard optimization problem with a wide range of practical applications. In an instance of this problem, we are given an undirected graph G = (V, E), a set of terminals\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R\subseteq V}$$\end{document} , and non-negative costs ce for all edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e \in E}$$\end{document} . Any tree that contains all terminals is called a Steiner tree; the goal is to find a minimum-cost Steiner tree. The vertices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V \backslash R}$$\end{document} are called Steiner vertices. The best approximation algorithm known for the Steiner tree problem is a greedy algorithm due to Robins and Zelikovsky (SIAM J Discrete Math 19(1):122–134, 2005); it achieves a performance guarantee of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1+\frac{\ln 3}{2}\approx 1.55}$$\end{document} . The best known linear programming (LP)-based algorithm, on the other hand, is due to Goemans and Bertsimas (Math Program 60:145–166, 1993) and achieves an approximation ratio of 2−2/|R|. In this paper we establish a link between greedy and LP-based approaches by showing that Robins and Zelikovsky’s algorithm can be viewed as an iterated primal-dual algorithm with respect to a novel LP relaxation. The LP used in the first iteration is stronger than the well-known bidirected cut relaxation. An instance is b-quasi-bipartite if each connected component of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G \backslash R}$$\end{document} has at most b vertices. We show that Robins’ and Zelikovsky’s algorithm has an approximation ratio better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1+\frac{\ln 3}{2}}$$\end{document} for such instances, and we prove that the integrality gap of our LP is between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{8}{7}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{2b+1}{b+1}}$$\end{document} .
引用
收藏
页码:345 / 370
页数:25
相关论文
共 53 条
  • [1] Agrawal A.(1995)When trees collide: an approximation algorithm for the generalized Steiner problem in networks SIAM J. Comput. 24 440-456
  • [2] Klein P.(1980)An integer linear programming approach to the Steiner problem in graphs Networks 10 167-178
  • [3] Ravi R.(1994)Improved approximations for the Steiner tree problem J. Algorithms 17 381-408
  • [4] Aneja Y.P.(1997)The SIAM J. Comput. 26 857-869
  • [5] Berman P.(2008)-Steiner ratio in graphs Theor. Comput. Sci. 406 207-214
  • [6] Ramaiyer V.(1989)The Steiner tree problem on graphs: inapproximability results Oper. Res. Lett. 8 25-29
  • [7] Borchers A.(1994)On the spanning tree polyhedron Math. Program. 64 209-229
  • [8] Du D.(1994)The Steiner tree problem 1: formulations, compositions, and extension of facets Math. Program. 64 231-246
  • [9] Chlebík M.(2001)The Steiner tree problem 2: properties and classes of facets Discrete Appl. Math. 112 101-120
  • [10] Chlebíková J.(1972)Steiner trees and polyhedra Networks 1 195-207