Multiple interior and boundary peak solutions to singularly perturbed nonlinear Neumann problems under the Berestycki–Lions condition

被引:0
作者
Youngae Lee
Jinmyoung Seok
机构
[1] National Taiwan University,Center for Advanced Study in Theoretical Sciences
[2] Kyonggi University,Department of Mathematics
来源
Mathematische Annalen | 2017年 / 367卷
关键词
35J20; 35J25; 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} be a smooth bounded domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}, N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. We consider the following singularly perturbed nonlinear elliptic problem on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, ε2Δv-v+f(v)=0,v>0onΩ,∂v∂ν=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varepsilon ^2\varDelta v-v+f(v)=0,\quad v>0\ \text {on}\ \varOmega ,\qquad \frac{\partial v}{\partial \nu }=0\quad \text {on}\ \partial \varOmega , \end{aligned}$$\end{document}where ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is an exterior unit normal vector to ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega $$\end{document} and a nonlinearity f satisfies subcritical growth condition. It has been known that for any l0,l1∈N∪{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0, l_1 \in \mathbb {N} \cup \{ 0 \}$$\end{document}, l0+l1>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0+l_1>0$$\end{document}, there exists a solution vε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_\varepsilon $$\end{document} of the above problem which exhibits l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document}-boundary peaks and l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-interior peaks for small ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} under rather strong conditions on f, such as the linearized non-degeneracy condition for a limiting problem. In this paper, we extend the previous result to more general class of f satisfying Berestycki–Lions conditions which we believe to be almost optimal.
引用
收藏
页码:881 / 928
页数:47
相关论文
共 70 条
  • [1] Adimurthi MG(1995)The role of the mean curvature in semilinear Neumann problem involving critical exponent Commun. Partial Differ. Equ. 20 591-631
  • [2] Yadava SL(1993)Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity J. Funct. Anal. 113 318-350
  • [3] Adimurthi PF(1995)Characterization of concentration points and Differ. Integral Equ. 8 41-68
  • [4] Yadava SL(1973)-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent J. Funct. Anal. 14 349-381
  • [5] Adimurthi PF(2013)Dual variational methods in critical point theory and applications J. Funct. Anal. 265 1324-1356
  • [6] Yadava SL(1983)An optimal bound on the number of interior spike solutions for the Lin–Ni–Takagi problem Arch. Ration. Mech. Anal. 82 313-345
  • [7] Ambrosetti A(2008)Nonlinear scalar field equations I J. Differ. Equ. 244 2473-2497
  • [8] Rabinowitz PH(2007)Singularly perturbed nonlinear Neumann problems with a general nonlinearity Arch. Ration. Mech. Anal. 185 185-200
  • [9] Ao W(2012)Standing waves for nonlinear Schrödinger equations with a general nonlinearity J. Differ. Equ. 252 3848-3872
  • [10] Wei J(2005)Singularly perturbed nonlinear Neumann problems under the conditions of Berestycki and Lions Calc. Var. Partial Differ. Equ. 24 459-477