Periodic Kicking Modulated Topological Phase Transitions in a Generalized Chern Insulator

被引:0
|
作者
Yang, Feng-Yun [1 ]
Zhang, Mei-Yu [1 ]
Wang, Lin-Cheng [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
03.65.Vf; 05.30.Rt; 05.70.Jk; 71.10.-w; Topological phase transition; Periodic driving; Generalized Chern insulator; QUANTIZED HALL CONDUCTANCE; EDGE STATES; NUMBER; SUPERCONDUCTIVITY;
D O I
10.1007/s10773-024-05625-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological phase transitions of a generalized two dimensional tight-binding Chern insulator with periodic delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-function kicks applied in x, y and z direction defined by the pseudo spin in the two-band systems, have been studied in this paper. The rich phase diagram characterized by Chern numbers as well as the critical lines in such system have been analyzed. This is an extended study about delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-function periodic kicks on topological systems as profound influences on periodic driven quantum systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Realization of a quadrupole topological insulator phase in a gyromagnetic photonic crystal
    Zhou, Peiheng
    Liu, Gui-Geng
    Wang, Zihao
    Li, Shuwei
    Xie, Qindong
    Zhang, Yunpeng
    Mandal, Subhaskar
    Xi, Xiang
    Gao, Zhen
    Deng, Longjiang
    Zhang, Baile
    NATIONAL SCIENCE REVIEW, 2024, 11 (11)
  • [32] Kinetic derivation of generalized phase space Chern-Simons theory
    Hayata, Tomoya
    Hidaka, Yoshimasa
    PHYSICAL REVIEW B, 2017, 95 (12)
  • [33] Bulk-Edge Correspondence for Chern Topological Phases: A Viewpoint from a Generalized Index Theorem
    Fukui, Takahiro
    Shiozaki, Ken
    Fujiwara, Takanori
    Fujimoto, Satoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (11)
  • [34] Topological phase transitions from Harper to Fibonacci crystals
    Amit, Guy
    Dana, Itzhack
    PHYSICAL REVIEW B, 2018, 97 (07)
  • [35] Staircase to higher-order topological phase transitions
    Cats, P.
    Quelle, A.
    Viyuela, O.
    Martin-Delgado, M. A.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [36] Topological phase transitions with and without energy gap closing
    Yang, Yunyou
    Li, Huichao
    Sheng, L.
    Shen, R.
    Sheng, D. N.
    Xing, D. Y.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [37] Observation of dynamical phase transitions in a topological nanomechanical system
    Tian, Tian
    Ke, Yongguan
    Zhang, Liang
    Lin, Shaochun
    Shi, Zhifu
    Huang, Pu
    Lee, Chaohong
    Du, Jiangfeng
    PHYSICAL REVIEW B, 2019, 100 (02)
  • [38] The Euler characteristic and topological phase transitions in complex systems
    de Amorim Filho, Edgar C.
    Moreira, Rodrigo A.
    Santos, Fernando A. N.
    JOURNAL OF PHYSICS-COMPLEXITY, 2022, 3 (02):
  • [39] Topological phase transitions on the square-octagon lattice driven by the Rashba spin-orbit coupling and staggered potential
    Wang, Guo-Xiang
    Zhang, Ying-Zheng
    PHYSICS LETTERS A, 2021, 419
  • [40] Topological states of Sr3PbO: From topological crystalline insulator phase in the bulk to quantum spin Hall insulator phase in the thin-film limit
    Lam, Hei
    Peng, Rui
    Wang, Ziyu
    Wan, Chunyu
    Liu, Junwei
    PHYSICAL REVIEW B, 2023, 108 (15)