Periodic Kicking Modulated Topological Phase Transitions in a Generalized Chern Insulator

被引:0
作者
Yang, Feng-Yun [1 ]
Zhang, Mei-Yu [1 ]
Wang, Lin-Cheng [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
03.65.Vf; 05.30.Rt; 05.70.Jk; 71.10.-w; Topological phase transition; Periodic driving; Generalized Chern insulator; QUANTIZED HALL CONDUCTANCE; EDGE STATES; NUMBER; SUPERCONDUCTIVITY;
D O I
10.1007/s10773-024-05625-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological phase transitions of a generalized two dimensional tight-binding Chern insulator with periodic delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-function kicks applied in x, y and z direction defined by the pseudo spin in the two-band systems, have been studied in this paper. The rich phase diagram characterized by Chern numbers as well as the critical lines in such system have been analyzed. This is an extended study about delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-function periodic kicks on topological systems as profound influences on periodic driven quantum systems.
引用
收藏
页数:16
相关论文
共 58 条
[1]   Effects of periodic kicking on dispersion and wave packet dynamics in graphene [J].
Agarwala, Adhip ;
Bhattacharya, Utso ;
Dutta, Amit ;
Sen, Diptiman .
PHYSICAL REVIEW B, 2016, 93 (17)
[2]   HOMOTOPY AND QUANTIZATION IN CONDENSED MATTER PHYSICS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (01) :51-53
[3]  
BADER RFW, 1980, ISRAEL J CHEM, V19, P8
[4]   Driven quantum many-body systems and out-of-equilibrium topology [J].
Bandyopadhyay, Souvik ;
Bhattacharjee, Sourav ;
Sen, Diptiman .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (39)
[5]   Topological Nematic States and Non-Abelian Lattice Dislocations [J].
Barkeshli, Maissam ;
Qi, Xiao-Liang .
PHYSICAL REVIEW X, 2012, 2 (03)
[6]  
Bernevig B., 2013, Topological insulators and topological superconductors, DOI DOI 10.1515/9781400846733
[7]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[8]   Coupled-wire construction of static and Floquet second-order topological insulators [J].
Bomantara, Raditya Weda ;
Zhou, Longwen ;
Pan, Jiaxin ;
Gong, Jiangbin .
PHYSICAL REVIEW B, 2019, 99 (04)
[9]  
Cardy J., 1996, Scaling and Renormalization in Statistical Physics, V5