Multi-features guidance network for partial-to-partial point cloud registration

被引:0
作者
Hongyuan Wang
Xiang Liu
Wen Kang
Zhiqiang Yan
Bingwen Wang
Qianhao Ning
机构
[1] Harbin Institute of Technology,
来源
Neural Computing and Applications | 2022年 / 34卷
关键词
Point cloud registration; 3D point matching; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The recent extraction of hybrid features improves point cloud registration performance by emphasizing more integrated information. However, hybrid features ignore the large dimensional differences, big semantic gaps, and mutual interference between the shape features and spatial coordinates. This paper proposes a novel Multi-Features Guidance Network (MFGNet) for partial-to-partial point cloud registration to overcome the intrinsic flaws of hybrid features, which leverages the shape features and the spatial coordinates to account for correspondences searching independently. The proposed network mainly includes four parts: keypoints’ feature extraction, correspondences search, correspondences credibility computation, and singular value decomposition (SVD), among which correspondences search and correspondences credibility computation are the cores of the network. Specifically, the correspondences search module utilizes the shape features and the spatial coordinates to guide correspondences matching independently and fusing the matching results to obtain the final matching matrix. Moreover, based on the conflicted relationship between the two matching matrices, the correspondences credibility computation module scores each correspondence pair’s reliability, which can reduce the impact of mismatched or non-matched points significantly. Empirical experiments on the ModelNet40 dataset validate the effectiveness of the proposed MFGNet, which achieves 0.19∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}, 0.24∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} and 1.3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} mean absolute errors for rotation matrix and 0.0010, 0.0011, and 0.0068 mean absolute errors for translation vectors, respectively, under the settings of unseen point clouds, unseen categories, and Gaussian noise.
引用
收藏
页码:1623 / 1634
页数:11
相关论文
共 50 条
[41]   Two-view point cloud registration network: feature and geometry [J].
Wang, Lingpeng ;
Yang, Bing ;
Ye, Hailiang ;
Cao, Feilong .
APPLIED INTELLIGENCE, 2024, 54 (04) :3135-3151
[42]   Learning Representative Features by Deep Attention Network for 3D Point Cloud Registration [J].
Xia, Xiaokai ;
Fan, Zhiqiang ;
Xiao, Gang ;
Chen, Fangyue ;
Liu, Yu ;
Hu, Yiheng .
SENSORS, 2023, 23 (08)
[43]   Point cloud registration algorithm based on neighborhood features of multi-scale normal vectors [J].
Lu, Jun ;
Peng, Zhong-Tao ;
Xia, Gui-Hua .
Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2015, 26 (04) :780-787
[44]   Iterative Feedback Network for Unsupervised Point Cloud Registration [J].
Xie, Yifan ;
Wang, Boyu ;
Li, Shiqi ;
Zhu, Jihua .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) :2327-2334
[45]   Robust Point Cloud Registration Network for Complex Conditions [J].
Hao, Ruidong ;
Wei, Zhongwei ;
He, Xu ;
Zhu, Kaifeng ;
He, Jiawei ;
Wang, Jun ;
Li, Muyu ;
Zhang, Lei ;
Lv, Zhuang ;
Zhang, Xin ;
Zhang, Qiwen .
SENSORS, 2023, 23 (24)
[46]   Deep Learning Point Cloud Registration based on Distance Features [J].
Perez-Gonzalez, J. ;
Luna-Madrigal, F. ;
Pina-Ramirez, O. .
IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (12) :2053-2060
[47]   PG-Net: Progressive Guidance Network via Robust Contextual Embedding for Efficient Point Cloud Registration [J].
Wang, Jingtao ;
Liu, Xin ;
Dai, Luanyuan ;
Ma, Jiayi ;
Wei, Lifang ;
Yang, Changcai ;
Chen, Riqing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[48]   Point Cloud Registration Based on Adaptively Fused Multimodal Features [J].
Shou, Yejun ;
Wei, Xiaoyao ;
Wang, Haocheng ;
Zheng, Qian ;
Li, Shuai ;
Xu, Zhijie ;
Pan, Gang ;
Cao, Yanlong .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (08) :8163-8170
[49]   HRegNet: A Hierarchical Network for Efficient and Accurate Outdoor LiDAR Point Cloud Registration [J].
Lu, Fan ;
Chen, Guang ;
Liu, Yinlong ;
Zhang, Lijun ;
Qu, Sanqing ;
Liu, Shu ;
Gu, Rongqi ;
Jiang, Changjun .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) :11884-11897
[50]   A Robust Multi-Local to Global with Outlier Filtering for Point Cloud Registration [J].
Chen, Yilin ;
Mei, Yang ;
Yu, Baocheng ;
Xu, Wenxia ;
Wu, Yiqi ;
Zhang, Dejun ;
Yan, Xiaohu .
REMOTE SENSING, 2023, 15 (24)