Multi-features guidance network for partial-to-partial point cloud registration

被引:0
作者
Hongyuan Wang
Xiang Liu
Wen Kang
Zhiqiang Yan
Bingwen Wang
Qianhao Ning
机构
[1] Harbin Institute of Technology,
来源
Neural Computing and Applications | 2022年 / 34卷
关键词
Point cloud registration; 3D point matching; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The recent extraction of hybrid features improves point cloud registration performance by emphasizing more integrated information. However, hybrid features ignore the large dimensional differences, big semantic gaps, and mutual interference between the shape features and spatial coordinates. This paper proposes a novel Multi-Features Guidance Network (MFGNet) for partial-to-partial point cloud registration to overcome the intrinsic flaws of hybrid features, which leverages the shape features and the spatial coordinates to account for correspondences searching independently. The proposed network mainly includes four parts: keypoints’ feature extraction, correspondences search, correspondences credibility computation, and singular value decomposition (SVD), among which correspondences search and correspondences credibility computation are the cores of the network. Specifically, the correspondences search module utilizes the shape features and the spatial coordinates to guide correspondences matching independently and fusing the matching results to obtain the final matching matrix. Moreover, based on the conflicted relationship between the two matching matrices, the correspondences credibility computation module scores each correspondence pair’s reliability, which can reduce the impact of mismatched or non-matched points significantly. Empirical experiments on the ModelNet40 dataset validate the effectiveness of the proposed MFGNet, which achieves 0.19∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}, 0.24∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} and 1.3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} mean absolute errors for rotation matrix and 0.0010, 0.0011, and 0.0068 mean absolute errors for translation vectors, respectively, under the settings of unseen point clouds, unseen categories, and Gaussian noise.
引用
收藏
页码:1623 / 1634
页数:11
相关论文
共 50 条
[31]   PANet: A Point-Attention Based Multi-Scale Feature Fusion Network for Point Cloud Registration [J].
Wu, Yue ;
Yao, Qianlin ;
Fan, Xiaolong ;
Gong, Maoguo ;
Ma, Wenping ;
Miao, Qiguang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[32]   Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features [J].
Kirsch, Andre ;
Guenter, Andrei ;
Koenig, Matthias .
2022 12TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS (ICPRS), 2022,
[33]   3D Pairwise Point Cloud Registration Network for Power Equipment Based on Multi-scale Features [J].
Shen, Qiubing ;
Zhao, Yige ;
Yang, Chen ;
Zhang, Yuhao ;
Chen, Hui .
2024 THE 9TH INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY, ICPRE, 2024, :1452-1457
[34]   DAMF-Net: Unsupervised Domain-Adaptive Multimodal Feature Fusion Method for Partial Point Cloud Registration [J].
Zhao, Haixia ;
Sun, Jiaqi ;
Dong, Bin .
REMOTE SENSING, 2024, 16 (11)
[35]   Gaussian Mixture Model-Based Registration Network for Point Clouds with Partial Overlap [J].
Li, Xiang ;
Sun, Jianwen ;
Own, Chung-Ming ;
Tao, Wenyuan .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 :405-416
[36]   MSC-Net: Multi-Scale Coherence-Based Point Cloud Registration Network [J].
Shan, Mingliang ;
Ye, Jun ;
Yan, Peng ;
Xu, Yangzhi ;
Wen, Junjie ;
Xu, Bin ;
Liu, Xuefeng ;
Xiong, Jichuan .
LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (14)
[37]   Multi-level filter network for low-overlap point cloud registration [J].
He M. ;
Liu L. ;
Li S. ;
Wu H. ;
Zhu D. .
Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (11) :1759-1772
[38]   Fusion of Geometric Attention and Multi-Scale Feature Network for Point Cloud Registration [J].
Du, Jiajin ;
Bai, Zhengyao ;
Liu, Xuheng ;
Li, Zekai ;
Xiao, Xiao ;
You, Yilin .
Computer Engineering and Applications, 2024, 60 (12) :234-244
[39]   Point rotation invariant features and attention fusion network for point cloud registration of 3D shapes [J].
Liu, Zeyang ;
Lu, Zhiguo ;
Shan, Yancong .
SCIENTIFIC REPORTS, 2025, 15 (01)
[40]   Two-view point cloud registration network: feature and geometry [J].
Lingpeng Wang ;
Bing Yang ;
Hailiang Ye ;
Feilong Cao .
Applied Intelligence, 2024, 54 :3135-3151