Multi-features guidance network for partial-to-partial point cloud registration

被引:0
|
作者
Hongyuan Wang
Xiang Liu
Wen Kang
Zhiqiang Yan
Bingwen Wang
Qianhao Ning
机构
[1] Harbin Institute of Technology,
来源
Neural Computing and Applications | 2022年 / 34卷
关键词
Point cloud registration; 3D point matching; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The recent extraction of hybrid features improves point cloud registration performance by emphasizing more integrated information. However, hybrid features ignore the large dimensional differences, big semantic gaps, and mutual interference between the shape features and spatial coordinates. This paper proposes a novel Multi-Features Guidance Network (MFGNet) for partial-to-partial point cloud registration to overcome the intrinsic flaws of hybrid features, which leverages the shape features and the spatial coordinates to account for correspondences searching independently. The proposed network mainly includes four parts: keypoints’ feature extraction, correspondences search, correspondences credibility computation, and singular value decomposition (SVD), among which correspondences search and correspondences credibility computation are the cores of the network. Specifically, the correspondences search module utilizes the shape features and the spatial coordinates to guide correspondences matching independently and fusing the matching results to obtain the final matching matrix. Moreover, based on the conflicted relationship between the two matching matrices, the correspondences credibility computation module scores each correspondence pair’s reliability, which can reduce the impact of mismatched or non-matched points significantly. Empirical experiments on the ModelNet40 dataset validate the effectiveness of the proposed MFGNet, which achieves 0.19∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}, 0.24∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} and 1.3∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} mean absolute errors for rotation matrix and 0.0010, 0.0011, and 0.0068 mean absolute errors for translation vectors, respectively, under the settings of unseen point clouds, unseen categories, and Gaussian noise.
引用
收藏
页码:1623 / 1634
页数:11
相关论文
共 50 条
  • [1] Multi-features guidance network for partial-to-partial point cloud registration
    Wang, Hongyuan
    Liu, Xiang
    Kang, Wen
    Yan, Zhiqiang
    Wang, Bingwen
    Ning, Qianhao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1623 - 1634
  • [2] VPRNet: Virtual Points Registration Network for Partial-to-Partial Point Cloud Registration
    Li, Shikun
    Ye, Yang
    Liu, Jianya
    Guo, Liang
    REMOTE SENSING, 2022, 14 (11)
  • [3] A Partial-to-Partial Point Cloud Registration Method Based on Geometric Attention Network
    Chen, Yi
    Wang, Yong
    Li, Jinlong
    Zhang, Yu
    Gao, Xiaorong
    JOURNAL OF SENSORS, 2023, 2023
  • [4] Robust Partial-to-Partial Point Cloud Registration in a Full Range
    Pan, Liang
    Cai, Zhongang
    Liu, Ziwei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2861 - 2868
  • [5] Partial-to-Partial Point Cloud Registration by Rotation Invariant Features and Spatial Geometric Consistency
    Zhang, Yu
    Zhang, Wenhao
    Li, Jinlong
    REMOTE SENSING, 2023, 15 (12)
  • [6] Hierarchical channel-spatial interaction network for partial-to-partial point cloud registration
    Li, Xiao
    Fu, Lin
    Liu, Yanbin
    Zhao, Jian
    Wang, Xiaodong
    REMOTE SENSING LETTERS, 2024, 15 (08) : 762 - 772
  • [7] SCANet: A Spatial and Channel Attention based Network for Partial-to-Partial Point Cloud Registration
    Zhou, Ruqin
    Li, Xixing
    Jiang, Wanshou
    PATTERN RECOGNITION LETTERS, 2021, 151 : 120 - 126
  • [8] Using Multi-Level Consistency Learning for Partial-to-Partial Point Cloud Registration
    Tan, Boyuan
    Qin, Hongxing
    Zhang, Xiaoxi
    Wang, Yiqun
    Xiang, Tao
    Chen, Baoquan
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (08) : 4881 - 4894
  • [9] Partial-to-Partial Point Generation Network for Point Cloud Completion
    Zhang, Ziyu
    Yu, Yi
    Da, Feipeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 11990 - 11997
  • [10] OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud Registration
    Xu, Hao
    Liu, Shuaicheng
    Wang, Guangfu
    Liu, Guanghui
    Zeng, Bing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3112 - 3121