Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions

被引:0
|
作者
A. D. Polyanin
机构
[1] Russian Academy of Sciences,Ishlinskii Institute for Problems in Mechanics
[2] National Research Nuclear University MEPhI,undefined
来源
Theoretical Foundations of Chemical Engineering | 2015年 / 49卷
关键词
delay differential equations; nonlinear reaction-diffusion equations with delay; exact solutions; generalized separable solutions; functional separable solutions; functional constraints method; delay time; Helmholtz equation; Poisson equation;
D O I
暂无
中图分类号
学科分类号
摘要
The following one-dimensional nonlinear delay reaction-diffusion equations are considered: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = [G(u)u_x ]_x + F(u,w)$\end{document}, where u=u(x,t), w=u(x,t−τ), and τ is the delay time. New classes of these equations are described that depend on one or two arbitrary functions of one argument and that have exact simple separable, generalized separable, and functional separable solutions. The functional constraints method is used to seek solutions. Exact solutions are also presented for the more complex three-dimensional delay reaction-diffusion equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = div[G(u)\nabla u] + F(u,w)$\end{document}. All of the derived solutions are new, contain free parameters, and can be used to solve certain problems and test approximate analytical and numerical methods for solving these or more complex nonlinear delay equations.
引用
收藏
页码:169 / 175
页数:6
相关论文
共 50 条
  • [41] Exact solutions to nonlinear delay differential equations of hyperbolic type
    Vyazmin, Andrei V.
    Sorokin, Vsevolod G.
    V INTERNATIONAL CONFERENCE ON PROBLEMS OF MATHEMATICAL AND THEORETICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 788
  • [42] On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws
    Yu, Jicheng
    Feng, Yuqiang
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [43] Reductions and exact solutions of Lotka-Volterra and more complex reaction-diffusion systems with delays
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [44] Invariant sets and solutions to higher-dimensional reaction-diffusion equations with source term
    Zhu Chunrong
    Qu Changzheng
    PHYSICS LETTERS A, 2006, 354 (5-6) : 437 - 444
  • [45] Computational method for singularly perturbed delay differential equations of the reaction-diffusion type with negative shift
    Kiltu, Gashu Gadisa
    Duressa, Gemechis File
    Bullo, Tesfaye Aga
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2021, 6 (03) : 285 - 291
  • [46] Riccati-Ermakov systems and explicit solutions for variable coefficient reaction-diffusion equations
    Pereira, Enrique
    Suazo, Erwin
    Trespalacios, Jessica
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 278 - 296
  • [47] On Periodic Solutions of a Nonlinear Reaction-Diffusion System
    Kosov, A. A.
    Semenov, E., I
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 26 : 35 - 46
  • [48] Investigation for the exact solutions of two classes of extended Sakovich equations
    Li, Zeting
    Gao, Ben
    PHYSICS LETTERS A, 2025, 533
  • [49] Reaction-Diffusion Equations in Mathematical Models Arising in Epidemiology
    Davydovych, Vasyl
    Dutka, Vasyl
    Cherniha, Roman
    SYMMETRY-BASEL, 2023, 15 (11):
  • [50] Diffusion approximation for multi-scale stochastic reaction-diffusion equations
    Xie, Longjie
    Yang, Li
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 155 - 184