Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions

被引:0
|
作者
A. D. Polyanin
机构
[1] Russian Academy of Sciences,Ishlinskii Institute for Problems in Mechanics
[2] National Research Nuclear University MEPhI,undefined
来源
Theoretical Foundations of Chemical Engineering | 2015年 / 49卷
关键词
delay differential equations; nonlinear reaction-diffusion equations with delay; exact solutions; generalized separable solutions; functional separable solutions; functional constraints method; delay time; Helmholtz equation; Poisson equation;
D O I
暂无
中图分类号
学科分类号
摘要
The following one-dimensional nonlinear delay reaction-diffusion equations are considered: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = [G(u)u_x ]_x + F(u,w)$\end{document}, where u=u(x,t), w=u(x,t−τ), and τ is the delay time. New classes of these equations are described that depend on one or two arbitrary functions of one argument and that have exact simple separable, generalized separable, and functional separable solutions. The functional constraints method is used to seek solutions. Exact solutions are also presented for the more complex three-dimensional delay reaction-diffusion equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_t = div[G(u)\nabla u] + F(u,w)$\end{document}. All of the derived solutions are new, contain free parameters, and can be used to solve certain problems and test approximate analytical and numerical methods for solving these or more complex nonlinear delay equations.
引用
收藏
页码:169 / 175
页数:6
相关论文
共 50 条
  • [21] EXACT SOLUTIONS OF A REACTION-DIFFUSION EGUATION
    Skotar, Alena
    Yurik, Ivan
    UKRAINIAN FOOD JOURNAL, 2012, 1 (02) : 81 - +
  • [22] Multi-Parameter Reaction-Diffusion Systems with Quadratic Nonlinearity and Delays: New Exact Solutions in Elementary Functions
    Polyanin, Andrei D.
    Zhurov, Alexei, I
    MATHEMATICS, 2022, 10 (09)
  • [23] Reaction-Diffusion Models with Delay: Some Properties, Equations, Problems, and Solutions
    Polyanin, A. D.
    Sorokin, V. G.
    Vyazmin, A. V.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2018, 52 (03) : 334 - 348
  • [24] Reaction-Diffusion Models with Delay: Some Properties, Equations, Problems, and Solutions
    A. D. Polyanin
    V. G. Sorokin
    A. V. Vyazmin
    Theoretical Foundations of Chemical Engineering, 2018, 52 : 334 - 348
  • [25] On multidimensional exact solutions of a nonlinear reaction-diffusion system
    Kosov, A. A.
    Semenov, E. I.
    Tirskikh, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (02): : 225 - 239
  • [26] EXACT SOLUTIONS A COUPLED NONLINEAR REACTION-DIFFUSION SYSTEM
    李志斌
    吴是静
    Acta Mathematica Scientia, 1996, (S1) : 139 - 142
  • [27] Exact Solutions for Pattern Formation in a Reaction-Diffusion System
    Lin, Yezhi
    Liu, Yinping
    Li, Zhibin
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (05) : 307 - 315
  • [28] Functional separable solutions of nonlinear reaction-diffusion equations with variable coefficients
    Polyanin, Andrei D.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 282 - 292
  • [29] Symmetries and Solutions for Some Classes of Advective Reaction-Diffusion Systems
    Torrisi, Mariano
    Tracina, Rita
    SYMMETRY-BASEL, 2022, 14 (10):
  • [30] Exact solutions for logistic reaction–diffusion equations in biology
    P. Broadbridge
    B. H. Bradshaw-Hajek
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67