Commutators of Marcinkiewicz integral with rough kernels on Sobolev spaces

被引:0
作者
Yan Ping Chen
Yong Ding
Xin Xia Wang
机构
[1] University of Science and Technology of Beijing,Department of Mathematics and Mechanics, School of Applied Science
[2] Ministry of Education,School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (BNU)
[3] Xinjiang University,The College of Mathematics and Systems Science
来源
Acta Mathematica Sinica, English Series | 2011年 / 27卷
关键词
Marcinkiewicz integral; commutator; rough kernel; Sobolev space; Bony paraproduct; 42B20; 42B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors give the boundedness of the commutator [b, µΩ,γ] from the homogeneous Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$\end{document} to the Lebesgue space Lp(ℝn) for 1 < p < ∞, where µΩ,γ denotes the Marcinkiewicz integral with rough hypersingular kernel defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$\end{document}, with Ω ∈ L1(Sn−1) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$\end{document} or Ω ∈ L(log+L)β(Sn−1) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$\end{document}, respectively.
引用
收藏
页码:1345 / 1366
页数:21
相关论文
共 29 条
[1]  
Stein E. M.(1958)On the function of Littlewood-Paley, Lusin and Marcinkiewicz Trans. Amer. Math. Soc. 88 430-466
[2]  
Ding Y.(2000)-boundedness of Marcinkiewicz integrals with Hardy space function kernel Acta Mathematica Sinica, English Series 16 593-600
[3]  
Fan D.(2002) bounds for the function of Marcinkiewicz Math. Research Lett. 9 697-700
[4]  
Pan Y.(2008)Operators with rough singular kernels J. Math. Anal. Appl. 337 906-918
[5]  
Al-Salman A.(2003)Certain operators with rough singular kernels Canadian J. Math. 55 504-532
[6]  
Al-Qassem A.(1990)A note on the Marcinkiewicz integral Colloq. Math. 60/61 235-243
[7]  
Cheng L.(2002)On commutators of Marcinkiewicz integrals with rough kernel J. Math. Anal. Appl. 275 60-68
[8]  
Chen D.(2003)On the commutator of the Marcinkiewicz integral J. Math. Anal. Appl. 283 351-361
[9]  
Ding Y.(2008)Boundedness of commutator of Marcinkiwicz integral with rough variable kernel Integ. Equa. Oper. Theory 61 477-492
[10]  
Fan D.(2006)Boundedness of commutators of CRW type on Triebel-Lizorkin spaces Chinese Annals of Math. 27 207-216