Measure-category properties of Borel plane sets and Borel functions of two variables

被引:0
作者
M. Balcerzak
S. Gła̧b
机构
[1] Technical University of Łódź,Institute of Mathematics
来源
Acta Mathematica Hungarica | 2010年 / 126卷
关键词
Lebesgue measure; Baire category; Mendez ; -ideal; nice base of a ; -ideal; Nikodym’s theorem; Lusin’s theorem; 28A05; 26B05;
D O I
暂无
中图分类号
学科分类号
摘要
Let [graphic not available: see fulltext] stand for the Fubini-type product of σ-ideals [graphic not available: see fulltext]. We consider mixed measure-category σ-ideals [graphic not available: see fulltext] and [graphic not available: see fulltext] (called the Mendez σ-ideals), and study some features of their structure. We show that [graphic not available: see fulltext] and [graphic not available: see fulltext] are not invariant with respect to nonzero rotations. Using Fremlin’s results, we describe nice Borel bases of [graphic not available: see fulltext] and [graphic not available: see fulltext]. The rest of the paper is devoted to uniform versions of the Nikodym theorem and the Lusin theorem for Borel functions of two variables.
引用
收藏
页码:241 / 252
页数:11
相关论文
共 16 条
  • [1] Balcerzak M.(2003)Density topologies for products of Real Anal. Exchange 20 265-274
  • [2] Hejduk J.(2003)-ideals Publ. Math. Debrecen 63 235-248
  • [3] Balcerzak M.(2005)Steinhaus property for products of ideals Real Anal. Exchange 31 73-96
  • [4] Kotlicka E.(1994)Relationships between continuity and abstract measurability of functions Real Anal. Exchange 20 536-558
  • [5] Bartoszewicz M.(1986)Borel images of sets of reals J. Symb. Logic 51 560-569
  • [6] Kotlicka E.(1991)On ideals of subsets of the plane and on Cohen reals Note Mat. 11 177-214
  • [7] Bartoszyński T.(1985)The partially ordered sets of measure theory and Tukey’s ordering Colloq. Math. 50 39-52
  • [8] Judah H.(1979)Iterated products of ideals of Borel sets C. R. Acad. Sci. Paris, sér. A-B 288 749-751
  • [9] Cichoń J.(1976)Une généralisation du théorème de Saint-Raymond sur les boréliens coupes Proc. Amer. Math. Soc. 60 124-128
  • [10] Pawlikowski J.(1978)K Proc. Amer. Math. Soc. 72 182-188