Small CRT-Exponent RSA Revisited

被引:1
作者
Atsushi Takayasu
Yao Lu
Liqiang Peng
机构
[1] The University of Tokyo,
[2] National Institute of Advanced Industrial Science and Technology (AIST),undefined
[3] State Key Laboratory of Information Security,undefined
[4] Institute of Information Engineering,undefined
[5] Chinese Academy of Sciences,undefined
[6] Data Assurance and Communication Security Research Center,undefined
[7] Chinese Academy of Sciences,undefined
来源
Journal of Cryptology | 2019年 / 32卷
关键词
CRT-RSA; Cryptanalysis; Coppersmith’s method; Lattices; LLL algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Since May (Crypto’02) revealed the vulnerability of the small CRT-exponent RSA using Coppersmith’s lattice-based method, several papers have studied the problem and two major improvements have been made. (1) Bleichenbacher and May (PKC’06) proposed an attack for small dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_q$$\end{document} when the prime factor p is significantly smaller than the other prime factor q; the attack works for p<N0.468\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<N^{0.468}$$\end{document}. (2) Jochemsz and May (Crypto’07) proposed an attack for small dp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_p$$\end{document} and dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_q$$\end{document} when the prime factors p and q are balanced; the attack works for dp,dq<N0.073\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_p, d_q<N^{0.073}$$\end{document}. Even a decade has passed since their proposals, the above two attacks are still considered as the state of the art, and no improvements have been made thus far. A novel technique seems to be required for further improvements since it seems that the attacks have been studied with all the applicable techniques for Coppersmith’s methods proposed by Durfee–Nguyen (Asiacrypt’00), Jochemsz–May (Asiacrypt’06), and Herrmann–May (Asiacrypt’09, PKC’10). Since it seems that the attacks have been studied with all the applicable techniques for Coppersmith’s methods proposed by Durfee–Nguyen (Asiacrypt’00), Jochemsz–May (Asiacrypt’06), and Herrmann–May (Asiacrypt’09, PKC’10), improving the previous results seem technically hard. In this paper, we propose two improved attacks on the small CRT-exponent RSA: a small dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_q$$\end{document} attack for p<N0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<N^{0.5}$$\end{document} (an improvement of Bleichenbacher–May’s) and a small dp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_p$$\end{document} and dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_q$$\end{document} attack for dp,dq<N0.122\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_p, d_q < N^{0.122}$$\end{document} (an improvement of Jochemsz–May’s). The latter result is also an improvement of our result in the proceeding version (Eurocrypt ’17); dp,dq<N0.091\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_p, d_q < N^{0.091}$$\end{document}. We use Coppersmith’s lattice-based method to solve modular equations and obtain the improvements from a novel lattice construction by exploiting useful algebraic structures of the CRT-RSA key generation equation. We explicitly show proofs of our attacks and verify the validities by computer experiments. In addition to the two main attacks, we also propose small dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_q$$\end{document} attacks on several variants of RSA.
引用
收藏
页码:1337 / 1382
页数:45
相关论文
共 33 条
[1]  
Bosma W(1997)The magma algebra system I: the user language J. Symb. Comput. 24 235-265
[2]  
Cannon JJ(2000)Cryptanalysis of RSA with private key IEEE Trans. Inf. Theory 46 1339-1349
[3]  
Playoust C(1997) less than J. Cryptol. 10 233-260
[4]  
Boneh D(2014)Small solutions to polynomial equations, and low exponent RSA vulnerabilities IEICE Transactions 97–A 1285-1295
[5]  
Durfee G(1982)A unified framework for small secret exponent attack on RSA Math. Ann. 261 515-534
[6]  
Coppersmith D(2009)Factoring polynomials with rational coefficients SIAM J. Comput. 39 874-903
[7]  
Kunihiro N(2017)An LLL algorithm with quadratic complexity Des. Codes Cryptography 83 1-21
[8]  
Shinohara N(1982)Cryptanalysis of dual RSA Electronics Letters 18 905-907
[9]  
Izu T(2014)Fast decipherment algorithm for RSA public-key cryptosystem Des. Codes Cryptography 73 383-392
[10]  
Lenstra AK(2016)Small secret exponent attack on RSA variant with modulus Discrete Applied Mathematics 203 127-133