Solvable base change and Rankin-Selberg convolutions

被引:0
作者
Tim Gillespie
机构
[1] St. Ambrose University,Department of Mathematics
来源
Science China Mathematics | 2017年 / 60卷
关键词
automorphic ; -function; base change; automorphic induction; 11F70; 11M26; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
Let π and π′ be unitary automorphic cuspidal representations of GLn(AE) and GLm(AF), and let E and F be solvable Galois extensions of Q of degrees l and l′, respectively. Using the fact that the automorphic induction and base change maps exist for E and F, and assuming an invariance condition under the actions of the Galois groups, we attach to the pair (π, π′) a Rankin-Selberg L-function L(s, π ×E,F xxxxxx) for which we prove a prime number theorem. This gives a method for comparing two representations that could be defined over completely different extensions, and the main results give a measure of how many cuspidal components the two representations π and π′ have in common when automorphically induced down to the rational numbers. The proof uses the structure of the Galois group of the composite extension EF and the character groups attached to the fields via class field theory. The second main theorem also gives an indication of when the base change of π up to the composite extension EF remains cuspidal.
引用
收藏
页码:99 / 112
页数:13
相关论文
共 29 条
[1]  
Brumley F(2006)Effective multiplicity one on GL(N) and narrow zero-free regions for Rankin-Selberg L-functions Amer J Math 128 1455-1474
[2]  
Carayol M(2000)Preuve de la conjecture de Langlands local pour GLn: Travaux de Harris-Taylor et Henniart Astérisque 266 191-243
[3]  
Cogdell J I(1994)Piatetski-Shapiro, converse theorems for GLn Publ Math Inst Hautes études Sci 79 157-214
[4]  
Gillespie T(2013)Factorization of automorphic L-functions and their zero statistics Int J Number Theory 9 1367-1378
[5]  
Gillespie T(2014)On a Rankin-Selberg L-function over different fields J Numbers 2014 1-7
[6]  
Gillespie T(2011)Prime number theorems for Rankin-Selberg L-functions over number fields Sci China Math 54 35-46
[7]  
Ji G(2014)The prime number theorem and Hypothesis H with lower-order terms J Number Theory 141 59-82
[8]  
Gillespie T(1979)Principal L-functions of the linear group Proc Sympos Pure Math 33 63-86
[9]  
Ye Y(1983)Rankin-Selberg convolutions Amer J Math 105 367-464
[10]  
Jacquet H(2005)A proof of Selberg’s orthogonality conjecture for automorphic Manuscripta Math 118 135-149