Fibrations of Genus Two on Complex Surfaces

被引:0
作者
Julio Rebelo
Bianca Santoro
机构
[1] Université de Toulouse,Institut de Mathématiques de Toulouse
[2] UPS,Mathematics Department
[3] INSA,undefined
[4] UT1,undefined
[5] UT2,undefined
[6] CNRS,undefined
[7] Institut de Mathématiques de Toulouse,undefined
[8] UMR 5219,undefined
[9] The City College of New York,undefined
来源
Results in Mathematics | 2011年 / 60卷
关键词
14D06; 32S65; 37F75; Fibrations; holomorphic foliations;
D O I
暂无
中图分类号
学科分类号
摘要
This work is devoted to the study of fibrations of genus 2 by using as its main tool the theory of singular holomorphic foliations. In particular we obtain a sharp differentiable version of Matsumoto–Montesinos theory. In the case of isotrivial fibrations, these methods are powerful enough to provide a detailed global picture of the both the ambient surface and of the structure of the fibrations itself.
引用
收藏
页码:369 / 403
页数:34
相关论文
共 10 条
  • [1] Catanese F.(2006)Fibrations of low genus, I Ann. Sc. l’ENS 4 Série 39 1011-1049
  • [2] Pignatelli R.(1963)On compact analytic surfaces, II Ann. Math. 77 563-626
  • [3] Kodaira K.(1994)Pseudo-periodic homeomorphisms and degeneration of Riemann surfaces Bull. AMS 30 70-75
  • [4] Matsumoto Y.(1973)The complete classification of fibres in pencils of curves of genus two Manuscr. Math. 9 143-186
  • [5] Montesinos J.M.(1966)On pencils of curves of genus two Topology 5 355-362
  • [6] Namikawa Y.(2004)Vertical vector fields on certain complex fibrations J. Math. Sci. Univ. Tokyo 11 177-243
  • [7] Ueno K.(1968)Reduction of singularities of the differentiable equation Am. J. Math. 90 248-269
  • [8] Ogg A.P.(undefined) =  undefined undefined undefined-undefined
  • [9] Rebelo J.C.(undefined)undefined undefined undefined undefined-undefined
  • [10] Seidenberg A.(undefined)undefined undefined undefined undefined-undefined