Contraction of surfaces by harmonic mean curvature flows and nonuniqueness of their self similar solutions
被引:0
作者:
Koichi Anada
论文数: 0引用数: 0
h-index: 0
机构:Department of Applied Physics,
Koichi Anada
机构:
[1] Department of Applied Physics,
[2] Waseda University,undefined
[3] 169-8555 Tokyo,undefined
[4] Japan
,undefined
来源:
Calculus of Variations and Partial Differential Equations
|
2001年
/
12卷
关键词:
Evolution Equation;
Normal Vector;
Curvature Flow;
Similar Solution;
Outer Normal Vector;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the evolution equations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$F_t=-(H_{-1})^{\alpha}\nu$\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0<\alpha<1$\end{document}, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\nu$\end{document} is the unit outer normal vector and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{-1}$\end{document} is the harmonic mean curvature defined by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{-1}=((\kappa_1^{-1}+\kappa_2^{-1})/2)^{-1}$\end{document}. In this paper, we prove the nonuniqueness of their strictly convex self similar solutions for some \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0<\alpha<1$\end{document}. This result implies that there are non-spherical self similar solutions.