Jacobi translation and the inequality of different metrics for algebraic polynomials on an interval

被引:0
作者
V. V. Arestov
M. V. Deikalova
机构
[1] Ural Federal University,Institute of Mathematics and Computer Science
[2] Russian Academy of Sciences,Institute of Mathematics and Mechanics, Ural Branch
来源
Doklady Mathematics | 2017年 / 95卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The sharp inequality of different metrics (Nikol’skii’s inequality) for algebraic polynomials in the interval [−1, 1] between the uniform norm and the norm of the space Lq(α,β), 1 ≤ q < ∞, with Jacobi weight ϕ(α,β)(x) = (1 − x)α(1 + x)β α ≥ β > −1, is investigated. The study uses the generalized translation operator generated by the Jacobi weight. A set of functions is described for which the norm of this operator in the space Lq(α,β), 1 ≤ q < ∞, α>β≥−12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > \beta \geqslant - \frac{1}{2}$$\end{document}, is attained.
引用
收藏
页码:21 / 25
页数:4
相关论文
共 14 条
[1]  
Nikol’skii S. M.(1951)undefined Tr. Mat. Inst. Akad. Nauk SSSR 38 244–278-708
[2]  
Szego G.(1953)undefined J. Anal. Math 3 225–244-243
[3]  
Zygmund A.(2015)undefined Comput. Methods Funct. Theory 15 689-S138
[4]  
Arestov V.(1974)undefined Univ. Beograd. Publ. Electrotehn. Fak. Sep. Mat. Fiz. 461/497 241-81
[5]  
Deikalova M.(2004)undefined Proc. Steklov Inst. Math., Suppl. no. 2 S117-47
[6]  
Lupas A.(2015)undefined J. Approx. Theory 192 69-118
[7]  
Gorbachev D. V.(2013)undefined Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 19 34-797
[8]  
Simonov I. E.(1971)undefined Ann. Math. Ser. 2 93 112-137
[9]  
Glazyrina P. Yu.(1972)undefined J. Math. Anal. Appl. 37 767-undefined
[10]  
Arestov V. V.(1974)undefined SIAM J. Math. Anal. 5 125-undefined