Local and Global Existence of Mild Solution for Impulsive Fractional Stochastic Differential Equations

被引:0
作者
P. Balasubramaniam
N. Kumaresan
K. Ratnavelu
P. Tamilalagan
机构
[1] Gandhigram Rural Institute-Deemed University,Department of Mathematics
[2] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2015年 / 38卷
关键词
Fractional stochastic differential equation; Mild solution; Fixed-point theorem; Impulsive condition; 26A33; 35R12; 39A50; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the local and global existence of mild solutions are studied for impulsive fractional semilinear stochastic differential equation with nonlocal condition in a Hilbert space. The results are obtained by employing fixed-point technique and solution operator. In many existence results for stochastic fractional differential systems, the value of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is restricted to 12<α≤1;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} < \alpha \le 1;$$\end{document} the aim of this manuscript is to extend the results which are valid for all values of α∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\,1).$$\end{document} An example is provided to illustrate the obtained theoretical results.
引用
收藏
页码:867 / 884
页数:17
相关论文
共 50 条
[41]   APPROXIMATE CONTROLLABILITY OF IMPULSIVE STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS [J].
Chadha, Alka ;
Bora, S. N. ;
Sakthivel, R. .
DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (01) :1-29
[42]   Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay [J].
Zhu, Bo ;
Liu, Lishan ;
Wu, Yonghong .
APPLIED MATHEMATICS LETTERS, 2016, 61 :73-79
[43]   The Existence of One Solution for Impulsive Differential Equations via Variational Methods [J].
Rouhani, Zhaleh ;
Afrouzi, Ghasem A. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
[44]   Existence results for fractional order impulsive functional differential equations with multiple delays [J].
Fang, Huiping ;
Song, Mingzhu .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[45]   Existence results for fractional order impulsive functional differential equations with multiple delays [J].
Huiping Fang ;
Mingzhu Song .
Advances in Difference Equations, 2018
[46]   EXISTENCE RESULTS FOR IMPULSIVE NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS [J].
Liu, Zhenhai ;
Lv, Jingyun .
MATHEMATICA SLOVACA, 2015, 65 (06) :1291-1308
[47]   EXISTENCE RESULTS FOR FRACTIONAL IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITION [J].
Rashid, M. H. M. ;
Al-Omari, A. .
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 6 (01) :37-60
[48]   Existence of Fractional Impulsive Functional Integro-Differential Equations in Banach Spaces [J].
Chalishajar, Dimplekumar ;
Ravichandran, Chokkalingam ;
Dhanalakshmi, Shanmugam ;
Murugesu, Rangasamy .
APPLIED SYSTEM INNOVATION, 2019, 2 (02) :1-17
[49]   Existence and continuous dependence of mild solutions for impulsive fractional integrodifferential equations in Banach spaces [J].
Safwan Al-Shara ;
Ahmad Al-Omari .
Computational and Applied Mathematics, 2020, 39
[50]   EXISTENCE OF MILD SOLUTIONS TO NEUTRAL FRACTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY [J].
Qi Wang Zhijie Wang Minmin Ding Hongyan Zhang School of Mathematical Sciences Anhui University Hefei .
Annals of Differential Equations, 2012, 28 (02) :226-233