Local and Global Existence of Mild Solution for Impulsive Fractional Stochastic Differential Equations

被引:0
作者
P. Balasubramaniam
N. Kumaresan
K. Ratnavelu
P. Tamilalagan
机构
[1] Gandhigram Rural Institute-Deemed University,Department of Mathematics
[2] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2015年 / 38卷
关键词
Fractional stochastic differential equation; Mild solution; Fixed-point theorem; Impulsive condition; 26A33; 35R12; 39A50; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the local and global existence of mild solutions are studied for impulsive fractional semilinear stochastic differential equation with nonlocal condition in a Hilbert space. The results are obtained by employing fixed-point technique and solution operator. In many existence results for stochastic fractional differential systems, the value of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is restricted to 12<α≤1;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} < \alpha \le 1;$$\end{document} the aim of this manuscript is to extend the results which are valid for all values of α∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\,1).$$\end{document} An example is provided to illustrate the obtained theoretical results.
引用
收藏
页码:867 / 884
页数:17
相关论文
共 50 条
[31]   Existence and uniqueness of mild solution to fractional stochastic heat equation [J].
Ralchenko, Kostiantyn ;
Shevchenko, Georgiy .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (01) :57-79
[32]   Analyze existence, uniqueness and controllability of impulsive fractional functional differential equations [J].
Muthuselvan, K. ;
Vadivoo, B. Sundara .
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, :171-190
[33]   Existence of solutions for nonlinear impulsive higher order fractional differential equations [J].
Wang, Xuhuan .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (80) :1-12
[34]   Implicit fractional differential equations: Existence of a solution revisited [J].
Celik, Canan ;
Develi, Faruk .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) :5090-5097
[35]   EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS FOR FRACTIONAL SEMILINEAR DIFFERENTIAL EQUATIONS [J].
Guswanto, Bambang Hendriya ;
Suzuki, Takashi .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[36]   Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions [J].
Shengquan Liang ;
Rui Mei .
Advances in Difference Equations, 2014
[37]   Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions [J].
Liang, Shengquan ;
Mei, Rui .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[38]   Existence, uniqueness and UHR stability of non-instantaneous impulsive fractional stochastic integro-differential equations [J].
Mouchir, Samiha ;
Slama, Abdeldjalil .
ARABIAN JOURNAL OF MATHEMATICS, 2025, 14 (02) :253-278
[39]   ON EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Avelin, B. ;
Viitasaari, L. .
THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 104 :49-60
[40]   Discussion on the existence of mild solution for fractional derivative by Mittag-Leffler kernel to fractional stochastic neutral differential inclusions [J].
Ma, Yong-Ki ;
Vijayakumar, V. ;
Shukla, Anurag ;
Nisar, Kottakkaran Sooppy ;
Thilagavathi, K. ;
Nashine, Hemant Kumar ;
Singh, Arun Kumar ;
Zakarya, Mohammed .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 :271-282