Local and Global Existence of Mild Solution for Impulsive Fractional Stochastic Differential Equations

被引:0
作者
P. Balasubramaniam
N. Kumaresan
K. Ratnavelu
P. Tamilalagan
机构
[1] Gandhigram Rural Institute-Deemed University,Department of Mathematics
[2] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2015年 / 38卷
关键词
Fractional stochastic differential equation; Mild solution; Fixed-point theorem; Impulsive condition; 26A33; 35R12; 39A50; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the local and global existence of mild solutions are studied for impulsive fractional semilinear stochastic differential equation with nonlocal condition in a Hilbert space. The results are obtained by employing fixed-point technique and solution operator. In many existence results for stochastic fractional differential systems, the value of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is restricted to 12<α≤1;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} < \alpha \le 1;$$\end{document} the aim of this manuscript is to extend the results which are valid for all values of α∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\,1).$$\end{document} An example is provided to illustrate the obtained theoretical results.
引用
收藏
页码:867 / 884
页数:17
相关论文
共 50 条
[21]   Existence of global mild solutions for a class of fractional partial functional differential equations [J].
Xi, Xuan-Xuan ;
Hou, Mimi ;
Zhou, Xian-Feng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2343-2354
[23]   Existence of Mild Solutions for Impulsive Fractional Functional Differential Equations of Order α ∈(1,2) [J].
Gautam, Ganga Ram ;
Dabas, Jaydev .
DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, ICDDEA 2015, 2016, 164 :141-148
[24]   Controllability of Impulsive Fractional Stochastic Partial Differential Equations [J].
Zhang, Lei ;
Ding, Yongsheng ;
Hao, Kuangrong ;
Wang, Tong .
2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, :513-517
[25]   Controllability of impulsive neutral stochastic differential equations with fractional Brownian motion [J].
Ahmed, Hamdy M. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2015, 32 (04) :781-794
[26]   (ω,ρ)-BVP Solution of Impulsive Hadamard Fractional Differential Equations [J].
Al-Omari, Ahmad ;
Al-Saadi, Hanan .
MATHEMATICS, 2023, 11 (20)
[27]   A note on the mild solutions of Hilfer impulsive fractional differential equations [J].
Sousa, J. Vanterler da C. ;
Oliveira, D. S. ;
de Oliveira, E. Capelas .
CHAOS SOLITONS & FRACTALS, 2021, 147
[28]   Existence of solutions for nonlinear fractional stochastic differential equations [J].
Sakthivel, R. ;
Revathi, P. ;
Ren, Yong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 81 :70-86
[29]   Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay [J].
Dabas, Jaydev ;
Chauhan, Archana .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (3-4) :754-763
[30]   Stochastic Impulsive Fractional Differential Evolution Equations with Infinite Delay [J].
Zhao, Shufen ;
Song, Minghui .
FILOMAT, 2017, 31 (13) :4261-4274