Local and Global Existence of Mild Solution for Impulsive Fractional Stochastic Differential Equations

被引:0
|
作者
P. Balasubramaniam
N. Kumaresan
K. Ratnavelu
P. Tamilalagan
机构
[1] Gandhigram Rural Institute-Deemed University,Department of Mathematics
[2] University of Malaya,Institute of Mathematical Sciences, Faculty of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2015年 / 38卷
关键词
Fractional stochastic differential equation; Mild solution; Fixed-point theorem; Impulsive condition; 26A33; 35R12; 39A50; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the local and global existence of mild solutions are studied for impulsive fractional semilinear stochastic differential equation with nonlocal condition in a Hilbert space. The results are obtained by employing fixed-point technique and solution operator. In many existence results for stochastic fractional differential systems, the value of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is restricted to 12<α≤1;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} < \alpha \le 1;$$\end{document} the aim of this manuscript is to extend the results which are valid for all values of α∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\,1).$$\end{document} An example is provided to illustrate the obtained theoretical results.
引用
收藏
页码:867 / 884
页数:17
相关论文
共 50 条