Level sets of the Takagi function: local level sets

被引:0
作者
Jeffrey C. Lagarias
Zachary Maddock
机构
[1] The University of Michigan,Department of Mathematics
[2] Columbia University,Department of Mathematics
来源
Monatshefte für Mathematik | 2012年 / 166卷
关键词
Binary expansion; Coarea formula; Hausdorff dimension; Level set; Singular function; Takagi function; 26A27; 26A45;
D O I
暂无
中图分类号
学科分类号
摘要
The Takagi function τ: [0,1] → [0, 1] is a continuous non-differentiable function constructed by Takagi in 1903. The level sets L(y) = {x : τ(x) = y} of the Takagi function τ(x) are studied by introducing a notion of local level set into which level sets are partitioned. Local level sets are simple to analyze, reducing questions to understanding the relation of level sets to local level sets, which is more complicated. It is known that for a “generic” full Lebesgue measure set of ordinates y, the level sets are finite sets. In contrast, here it is shown for a “generic” full Lebesgue measure set of abscissas x, the level set L(τ(x)) is uncountable. An interesting singular monotone function is constructed associated to local level sets, and is used to show the expected number of local level sets at a random level y is exactly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{2}}$$\end{document}.
引用
收藏
页码:201 / 238
页数:37
相关论文
共 37 条
[1]  
Allaart P.C.(2012)On the distribution of cardinalities of the level sets of the Takagi function J. Math. Anal. Appl. 388 1117-1129
[2]  
Allaart P.C.(2006)Extreme values of some continuous nowhere differentiable functions Math. Proc. Camb. Phil. Soc. 140 269-295
[3]  
Kawamura K.(2010)The improper infinite derivatives of Takagi’s nowhere-differentiable function J. Math. Anal. Appl. 372 656-665
[4]  
Allaart P.C.(2011)Hausdorff dimension of Takagi’s function level sets Nonlinear Anal. 74 5081-5087
[5]  
Kawamura K.(1989)Probabilistic behavior of functions in the Zygmund spaces Λ Proc. London Math. Soc. 59 558-592
[6]  
de Amo E.(1984) and λ Proc. Am. Math. Soc. 91 373-376
[7]  
Bhouri I.(1988)On maxima of Takagi–van der Waerden functions Japan J. Appl. Math. 5 431-439
[8]  
Díaz Carrillo M.(1990)Sur la mesure d’occupation d’une classe de fonctions self-affines Japan J. Appl. Math. 7 197-202
[9]  
Fernándex-Sánchez J.(1960)Hausdorff dimension of the level sets for self-affine functions Ill. J. Math. 4 187-209
[10]  
Anderson J.M.(2008)Hausdorff dimension in probability theory Acta Math. Hungar. 121 371-393