Harvestman: a framework for hierarchical feature learning and selection from whole genome sequencing data

被引:0
作者
Trevor S. Frisby
Shawn J. Baker
Guillaume Marçais
Quang Minh Hoang
Carl Kingsford
Christopher J. Langmead
机构
[1] Carnegie Mellon University,Computational Biology Department
[2] Carnegie Mellon University,Computer Science Department
来源
BMC Bioinformatics | / 22卷
关键词
Feature selection; Hierarchical feature spaces; Knowledge graphs; Integer linear programming; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 198 条
  • [21] Tang J(2017)Ensembl 2018 Nucl Acids Res 46 754-262
  • [22] Liu H(2018)The cancer spliceome: reprograming of alternative splicing in cancer Front Mol Biosci 5 80-57518
  • [23] Blum AL(2019)The untranslated regions of mRNAs in cancer Trends Cancer 5 245-194
  • [24] Langley P(2018)Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19 Cell 174 564-320
  • [25] Hira ZM(2018)Nucleosomes positioning around transcriptional start site of tumor suppressor (rbl2/p130) gene in breast cancer Mol Biol Rep 45 185-171
  • [26] Gillies DF(2018)Zfx acts as a transcriptional activator in multiple types of human tumors by binding downstream of transcription start sites at the majority of cpg island promoters Genome Res 28 310-2830
  • [27] Saeys Y(2011)Genetic variation and its role in malignancy Int J Biomed Sci IJBS 7 158-74
  • [28] Inza I(2019)Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification J Med Syst 43 235-undefined
  • [29] Larrañaga P(2011)Scikit-learn: machine learning in Python J Mach Learn Res 12 2825-undefined
  • [30] Kononenko I(2014)Xsede: accelerating scientific discovery Comput Sci Eng 16 62-undefined