Interpretable survival prediction for colorectal cancer using deep learning

被引:0
|
作者
Ellery Wulczyn
David F. Steiner
Melissa Moran
Markus Plass
Robert Reihs
Fraser Tan
Isabelle Flament-Auvigne
Trissia Brown
Peter Regitnig
Po-Hsuan Cameron Chen
Narayan Hegde
Apaar Sadhwani
Robert MacDonald
Benny Ayalew
Greg S. Corrado
Lily H. Peng
Daniel Tse
Heimo Müller
Zhaoyang Xu
Yun Liu
Martin C. Stumpe
Kurt Zatloukal
Craig H. Mermel
机构
[1] Google Health,
[2] Medical University of Graz,undefined
[3] Google Health via Advanced Clinical,undefined
[4] Google Health,undefined
[5] Tempus Labs Inc.,undefined
来源
npj Digital Medicine | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases (7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95% CI: 0.66–0.73) and 0.69 (95% CI: 0.64–0.72), and added significant predictive value to a set of nine clinicopathologic features. To interpret the DLS, we explored the ability of different human-interpretable features to explain the variance in DLS scores. We observed that clinicopathologic features such as T-category, N-category, and grade explained a small fraction of the variance in DLS scores (R2 = 18% in both validation sets). Next, we generated human-interpretable histologic features by clustering embeddings from a deep-learning-based image-similarity model and showed that they explained the majority of the variance (R2 of 73–80%). Furthermore, the clustering-derived feature most strongly associated with high DLS scores was also highly prognostic in isolation. With a distinct visual appearance (poorly differentiated tumor cell clusters adjacent to adipose tissue), this feature was identified by annotators with 87.0–95.5% accuracy. Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies.
引用
收藏
相关论文
共 50 条
  • [1] Interpretable survival prediction for colorectal cancer using deep learning
    Wulczyn, Ellery
    Steiner, David F.
    Moran, Melissa
    Plass, Markus
    Reihs, Robert
    Tan, Fraser
    Flament-Auvigne, Isabelle
    Brown, Trissia
    Regitnig, Peter
    Chen, Po-Hsuan Cameron
    Hegde, Narayan
    Sadhwani, Apaar
    MacDonald, Robert
    Ayalew, Benny
    Corrado, Greg S.
    Peng, Lily H.
    Tse, Daniel
    Müller, Heimo
    Xu, Zhaoyang
    Liu, Yun
    Stumpe, Martin C.
    Zatloukal, Kurt
    Mermel, Craig H.
    arXiv, 2020,
  • [2] Interpretable survival prediction for colorectal cancer using deep learning
    Wulczyn, Ellery
    Steiner, David F.
    Moran, Melissa
    Plass, Markus
    Reihs, Robert
    Tan, Fraser
    Flament-Auvigne, Isabelle
    Brown, Trissia
    Regitnig, Peter
    Chen, Po-Hsuan Cameron
    Hegde, Narayan
    Sadhwani, Apaar
    MacDonald, Robert
    Ayalew, Benny
    Corrado, Greg S.
    Peng, Lily H.
    Tse, Daniel
    Mueller, Heimo
    Xu, Zhaoyang
    Liu, Yun
    Stumpe, Martin C.
    Zatloukal, Kurt
    Mermel, Craig H.
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [3] Colorectal Cancer Survival Prediction Using Deep Distribution Based Multiple-Instance Learning
    Li, Xingyu
    Jonnagaddala, Jitendra
    Cen, Min
    Zhang, Hong
    Xu, Steven
    ENTROPY, 2022, 24 (11)
  • [4] Antibody structure prediction using interpretable deep learning
    Ruffolo, Jeffrey A.
    Sulam, Jeremias
    Gray, Jeffrey J.
    PATTERNS, 2022, 3 (02):
  • [5] Survival Prediction Using Deep Learning
    Tarkhan, Aliasghar
    Simon, Noah
    Bengtsson, Thomas
    Nguyen, Kien
    Dai, Jian
    SURVIVAL PREDICTION - ALGORITHMS, CHALLENGES AND APPLICATIONS, VOL 146, 2021, 146 : 207 - 214
  • [6] Using interpretable deep learning to model cancer dependencies
    Lin, Chih-Hsu
    Lichtarge, Olivier
    BIOINFORMATICS, 2021, 37 (17) : 2675 - 2681
  • [7] Interpretable machine learning model for prediction of overall survival in laryngeal cancer
    Alabi, Rasheed Omobolaji
    Almangush, Alhadi
    Elmusrati, Mohammed
    Leivo, Ilmo
    Makitie, Antti A.
    ACTA OTO-LARYNGOLOGICA, 2025, 145 (03) : 256 - 262
  • [8] Risk factors affecting patients survival with colorectal cancer in Morocco: survival analysis using an interpretable machine learning approach
    El Badisy, Imad
    Ben Brahim, Zineb
    Khalis, Mohamed
    Elansari, Soukaina
    Elhitmi, Youssef
    Abbass, Fouad
    Mellas, Nawfal
    EL Rhazi, Karima
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [9] Risk factors affecting patients survival with colorectal cancer in Morocco: survival analysis using an interpretable machine learning approach
    Imad El Badisy
    Zineb BenBrahim
    Mohamed Khalis
    Soukaina Elansari
    Youssef ElHitmi
    Fouad Abbass
    Nawfal Mellas
    Karima EL Rhazi
    Scientific Reports, 14
  • [10] Interpretable Deep Learning for Probabilistic MJO Prediction
    Delaunay, Antoine
    Christensen, Hannah M.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (16)